
Introduction to Processing
Top-Down Games

Top-Down Games
Top-down games, also sometimes referred to as bird's-eye view
games, refers to games where the camera angle that shows players and the
areas around them is directly above.

Top-Down Games
Top-down games, also sometimes referred to as bird's-eye view
games, refers to games where the camera angle that shows players and the
areas around them is directly above.

Collision Detection
Assume that we already implemented the two collision detection methods
below:

def check_for_collision(sprite1, sprite2):
 # returns whether sprite1 and sprite2 intersects

def check_for_collision_list(sprite, sprite_list):

 #returns list of sprites in sprite_list which

 #intersects with sprite.

Sprite Functions

Sprite “get” functions
Use the get_left, get_right, get_top and get_bottom methods to get the
respective boundaries of the sprite!

get_top()

get_right()
get_left()

get_bottom()

Sprite “set” functions

sprite1.set_right(sprite2.get_left())

sprite1 sprite2

Velocity
Velocity of an object is the rate of change of its position. It is a vector and
can be decomposed into a x-component and a y-component.
A Sprite object has attributes change_x and change_y for its velocity.

Origin (0,0)

X

Y
(center_x, center_y)

change_x

change_y

In our games, velocity is
measured in pixels per frame.

center_x = center_x + change_x
center_y = center_y + change_y

Resolving Top-Down Collisions
Instead of moving in both the x
and y directions and then try to
resolve collisions, it is easier to

1) move in x direction, check for
and resolve collision
2) then move in the y direction
and then check for and resolve
collision again.

center_x += change_x
center_y += change_y

Resolving Top-Down Collisions
move in horizontal direction
center_x += change_x
resolve collisions

move in vertical direction
center_y += change_y
resolve collisions

Horizontal Direction
move in horizontal direction

Horizontal Direction
move in horizontal direction
compute list of all platforms which collide with player
if list not empty:
 if player is moving right:

Horizontal Direction
move in horizontal direction
compute list of all platforms which collide with player
if list not empty:
 if player is moving right:
 set right side of player = left side of a
 collided platform

Horizontal Direction
move in horizontal direction
compute list of all platforms which collide with player
if list not empty:
 if player is moving right:
 set right side of player = left side of a
 collided platform
 if player is moving left:

Horizontal Direction
move in horizontal direction
compute list of all platforms which collide with player
if list not empty:
 if player is moving right:
 set right side of player = left side of a
 collided platform
 if player is moving left:

Horizontal Direction
move in horizontal direction
compute list of all platforms which collide with player
if list not empty:
 if player is moving right:
 set right side of player = left side of a
 collided platform
 if player is moving left:
 set left side of player = right side of a
 collided platform

Vertical Direction

Similarly for the vertical direction:

move in vertical direction
compute list of all platforms which collide with player
if list not empty:
 if player is moving up:
 set top side of player = bottom side of a
 collided platform
 if player is moving down:
 set bottom side of player = top side of a
 collided platform

