
Introduction to Processing
Top-Down Games
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Top-down games, also sometimes referred to as bird's-eye view 
games, refers to games where the camera angle that shows players and the 
areas around them is directly above.
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Collision Detection
Assume that we already implemented the two collision detection methods 
below:

def check_for_collision(sprite1, sprite2):
 # returns whether sprite1 and sprite2 intersects

def check_for_collision_list(sprite, sprite_list):

 #returns list of sprites in sprite_list which     

 #intersects with sprite.



Sprite Functions



Sprite “get” functions
Use the get_left, get_right, get_top and get_bottom methods to get the 
respective boundaries of the sprite!

get_top()

get_right()
get_left()

get_bottom()



Sprite “set” functions

sprite1.set_right(sprite2.get_left())

sprite1 sprite2



Velocity
Velocity of an object is the rate of change of its position. It is a vector and 
can be decomposed into a x-component and a y-component.  
A Sprite object has attributes change_x and change_y for its velocity. 

Origin (0,0)

X

Y
(center_x, center_y)

change_x

change_y

In our games, velocity is
measured in pixels per frame. 

center_x = center_x + change_x 
center_y = center_y + change_y



Resolving Top-Down Collisions
Instead of moving in both the x 
and y directions and then try to 
resolve collisions, it is easier to 

1) move in x direction, check for 
and resolve collision 
2) then move in the y direction 
and then check for and resolve 
collision again.

center_x += change_x
center_y += change_y



Resolving Top-Down Collisions
# move in horizontal direction
center_x += change_x
# resolve collisions

# move in vertical direction
center_y += change_y
# resolve collisions



Horizontal Direction
move in horizontal direction
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if list not empty:
   if player is moving right:
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Horizontal Direction
move in horizontal direction
compute list of all platforms which collide with player 
if list not empty:
   if player is moving right:
      set right side of player = left side of a 
        collided platform
  if player is moving left:
           set left side of player = right side of a 
        collided platform

      



Vertical Direction

Similarly for the vertical direction:

move in vertical direction
compute list of all platforms which collide with player 
if list not empty:
   if player is moving up:
      set top side of player = bottom side of a 
        collided platform
  if player is moving down:
           set bottom side of player = top side of a 
        collided platform

      


