
Introduction to Processing
Collision Detection

Rectangle-Rectangle Collision

Since images are simply rectangular array of pixels, rectangle-rectangle
collision is very useful for writing games.

Rectangle-Rectangle Collision
Rectangles below have a horizontal overlap but not a vertical one.

Origin (0,0)

Rectangle-Rectangle Collision
Rectangles below have a vertical overlap but not a horizontal one.

Origin (0,0)

Rectangle-Rectangle Collision
Rectangles below have overlaps in both directions.

Origin (0,0)

Checking Overlap

left1 right1

right2left2

Origin (0,0)

1) Need right2 to be larger than left1.

Checking Overlap

How do we check for overlap?

left1 right1

right2left2

1) Need right2 to be larger than left1.

Checking Overlap

How do we check for overlap?

left1 right1

right2left2

1) Need right2 to be larger than left1.
But not too much bigger!

Checking Overlap

How do we check for overlap?

left1 right1

right2left2

1) Need right2 to be larger than left1.
2) In addition, need left2 to be less than

right1.

Checking Overlap

How do we check for overlap?

left1 right1

right2left2

if right2 > left1 and left2 < right1:
overlap!

Rectangles below have overlaps in both directions.

Rectangle-Rectangle Collision

right1left1

left2 right2

x_overlap = right2 > left1 and left2 < right1

Rectangle-Rectangle Collision
Rectangles below have overlaps in both directions.

bottom1

top1

top2

bottom2

x_overlap = right2 > left1 and left2 < right1
y_overlap = bottom2 > top1 and top2 < bottom1
if x_overlap and y_overlap:

overlap!

check_for_collision(sprite1, sprite2)
We'll write the check_for_collision method which accepts two parameters:
sprite1 and sprite2 and returns whether they intersect.

def check_for_collision(self, sprite1, sprite2):
returns whether sprite1 and sprite2 intersects

Use the get_left, get_right, get_top and get_bottom methods to get the
respective boundaries of the sprite!

get_top()

get_right()
get_left()

get_bottom()

check_for_collision_list(sprite, sprite_list)

Another useful method is the check_for_collision_list which accepts two
parameters: sprite and sprite_list and returns a list of sprites in
sprite_list which intersects with sprite.

def check_for_collision_list(self, sprite, sprite_list):

#returns list of sprites in sprite_list which

#intersects with sprite.

remember to call check_for_collision! use self and

the dot notation.

if self.check_for_collision(sp1, sp2):

Pick Up Coins Lab

In the previous lab, you are now able to control a sprite with the keyboard.

In this lab, implement check_for_collision and check_for_collision_list. Then
implement on_update so that as the tank moves about, it picks up coins and
coins are removed from the screen appropriately.

Display the text which shows the coin count. For example, "Coins: 10" and
update appropriately.

