
Introduction to Processing
The Basics(Python Version)

Processing

• Processing started by Ben Fry and Casey Reas while both were graduate students
at MIT Media Lab in 2001.
• The original language for Processing is Java. We will use the Python version.
• Designed for visual artists with limited programming experience who want to

create art without knowing complicated Java syntax.
• In its current version, hundred of libraries have been written for computer vision,

data visualization, music composition, networking, 3D drawings and programming
electronics.

Processing
Processing was created originally for the Java language. For this reason, the
interface to Processing's Python version is not very "Pythonic".

I wrote some code to hide some of this interface and make it flow better with
Python. Download the zip file that contains this code on our course website
here.

Once you unzip the contents and open it with Processing. There should be
three files:
processing_py.pyde(DO NOT MODIFY THIS FILE)
game.py(write all of your code here)

There is also a data folder where you should put all of your images for your
game.

https://longbaonguyen.github.io/courses/apcsp/processing_arcade/processing_py.zip

game.py
All of your code should go here in game.py.

You will need to implement(provide code for) two methods/functions:

1) def __init__(self): Declare and initialize all your game/application variables.

2) def on_draw(self): Called automatically 60 times a second to draw and update all
objects. Write code to draw and update all objects here.

Sketch
class Window:
 def __init__(self):
 """ Initialize all variables here. """

 def on_draw(self):
 """ Called automatically 60 times a second to draw/update
 objects.
 """

First declare and initialize all variables in __init__

__init__ only runs ONCE.

on_draw runs automatically 60 times a second
to draw and update all images

Creating Variables
class Window:
 def __init__(self):
 """ Initialize all variables here. """

 self.x = 10
 y = 5

 def on_draw(self):
 """ Called automatically 60 times a second to draw/update objects."""

 print(self.x) # valid!
 print(y) # error! y does not exist here!

When declaring/initializing a global variable that is used
throughout the game, use self and the dot notation.

The y variable here does not have the “self.” prefix.
Consequently, it only exists locally here in init.

Updating Variables

What values are printed on the console in the following program?
class Window:

 def __init__(self):
 """ Initialize all variables here. """

 self.x = 10

 def on_draw(self):

 """ Called automatically 60 times a second to draw/update all objects."""
 print(self.x)
 self.x += 5

Answer: Prints:
10 in the first frame
15 in the second frame
20 in the third frame
etc…

Animation
class Window:
 def __init__(self):
 """ Initialize all variables here. """

 self.x = WIDTH/2
 self.y = HEIGHT/2

 def on_draw(self):
 """ Called automatically 60 times/second to draw/update objects."""
 # fill(red, green, blue)
 fill(255, 0, 0)

 ellipse(self.x, self.y, 300, 300)
 self.x += 5

Animation only takes five lines of code!

(update) move circle 5 pixels to the
right

draw red circle at (self.x, self.y)
diameter = 300 pixels

Repeat 60 times a second!

Color

Color is defined by a range of numbers.

In grayscale, 0 is black, 255 is white and any color in between is a shade of gray
ranging from black to white.

Color
RGB Color is determined by three parameters. Each parameter is in the range
0-255. The first indicates the degree of red(R), the second the degree of
green(G) and the last the degree of blue(B).

Some Methods for Drawing Shapes

fill(r, g, b):By calling fill BEFORE a shape will set the color of the shape.
Call it again before drawing another shape to change color.

line(x1, y1, x2, y2):draw line through (x1, y1) and (x2, y2).

ellipse(x, y, width, height):center of ellipse is (x, y); width and
height are the lengths of the axes.

rect(x, y, width, height:center of the rectangle is (x,y)

The Coordinate System

Sprites
A sprite is an image(.png or .jpg) that represent a character or object in a
game.

In arcade.py, I have written a simple custom class: the Sprite class. It allows
us to easily draw, scale and animate sprites. We may create several Sprite
instances or objects.

This reusability feature is important especially when we need to create
many objects(for example enemies) with similar data and behaviors.

The Sprite Class
The Sprite class’ constructor allows us
to create a Sprite object. It has many
parameters to help us initialize a Sprite
object for our game.

Usually, we specify only the image
filename and scaling and set the other
attributes as needed.

player = Sprite(“player.png”, 0.5)

Sprite(filename, scale=1.0)

center_x
center_y
angle
width
height
change_x
change_y
change_angle
alpha

draw()
move()

width

height

The Sprite Class

Properties: Every sprite has properties or
variables that contains information
about the sprite. A sprite has variables
for its position, or velocity. These can be
modified or updated.

Functions or Methods:
Every sprite has useful has functionalities.
For example, a sprite can move, or draw itself.

Sprite(filename, scale=1.0)

center_x
center_y
angle
width
height
change_x
change_y
change_angle
alpha

draw()
move()

width

height

Sprite Example 1

class Window:
 def __init__(self):
 """ Initialize all variables here. """
 self.player = Sprite(“tank.png”)
 self.player.scale = 2.0
 self.player.center_x = 100
 self.player.center_y = 200

 def on_draw(self):
 """ Called automatically 60 times a second to draw all objects."""
 self.player.draw()
 self.player.move()

These four lines are equivalent to:
self.player = Sprite(“tank.png”, 2.0, 100, 200)

A tank sprite is drawn on the screen but is not moving.

Sprite Example 2: Moving the tank

A tank sprite is drawn on the screen but is moving 5 pixels per frame to the
right.

class Window:
 def __init__(self):

 """ Initialize all variables here. """
 self.player = Sprite(“tank.png”, 2.0, 100, 200)

 self.player.change_x = 5

 def on_draw(self):
 """ Called automatically 60 times a second to draw all objects."""
 self.player.draw()

 self.player.move()

Adding Text

The text(str, x, y) function draws text on the screen.You can set the
text size and color by using textSize(s) and fill(r, g, b) before
drawing the text.

textSize(32);

fill(255, 0, 0);

text("Hello, World!", 100, 200);

The Console
Messages can be printed on the console(for error-checking purposes, etc..) by using the
command print().

print(4);
print(4 + 3/2);
print(“Hello, world”);

Download Processing

Download Processing!

http://www.processing.org

http://www.processing.org/

