
Introduction to Python
Dictionaries

1

Topics

1) enumerate()
2) Dictionaries
3) Iterating over a dictionary

2

Dictionaries
Python lists are useful but in some applications, it is nice to have a different
indexing scheme than the integers. For example, consider a database of
students' names and their grades:

Mike Smith: [70,81, 84]
Sarah Johnson: [88,71,85]
…
Suppose that this database has hundreds of records. It is hard to access
these students' grades using 0-based integer indexing.

Python dictionaries allow "values" to be accessed by meaningful "keys". In
the example above, we can access the database of grades by name(keys)
instead of integer index.

3

Dictionaries
Dictionaries are extremely flexible mappings of keys to values, and form
the basis of much of Python’s internal implementation.

They can be created via a comma-separated list of key:value pairs within
curly braces. The "keys" must be distinct.

data = {"Mike":3.1, "Sarah":3.6, "John":3.4}
print(data["Mike"]) # 3.1
gpa = data["John"]
print(gpa) # 3.4
print(len(data)) # 3

4

Dictionaries
New items can be added to the dictionary using indexing as well.

data = {"Mike":3.1, "Sarah":3.6, "John":3.4}
data['Andy'] = 2.9
print(data)

Output:
{'Mike': 3.1, 'Sarah': 3.6, 'John': 3.4, 'Andy': 2.9}

print(data['Courtney']) # KeyError
 # 'Courtney' not in set of keys

5

Dictionaries
Modifying dictionary.

data = {"Mike":3.1, "Sarah":3.6, "John":3.4}
data['Mike'] = 3.2
print(data) # {'Mike': 3.2, 'Sarah': 3.6, 'John': 3.4}
data['Sarah'] += 0.2
print(data) # {'Mike': 3.2, 'Sarah': 3.8, 'John': 3.4}

6

Membership Operations
By default, membership operations checks keys of a dictionary.

scores = {'Mike':5, 'John':2, 'Sarah':4}

print('Mike' in scores) # True
print(5 in scores) # False
print('Michele' not in scores) # True

This will allow use to loop through a dictionary.

7

Iterating over keys a dictionary
It is easy to iterate over keys of the dictionary. The default loop iterates
over the keys.

grades = {"Mike":3.1, "Sarah":3.6, "John":3.4}
for x in grades:
 print(x, end=" ")

Output:
Mike Sarah John

8

Iterating over keys a dictionary
The following compute the average GPA.

grades = {"Mike":3.1, "Sarah":3.6, "John":3.4}
sum = 0
for student in grades:
 sum += grades[student]
average = sum/len(grades)

Note: This [] syntax is the same as the
syntax for lists and strings!

Other languages, like Java, has different
syntax for accessing different data
structures.

9

Example of a Use for Dictionaries
One use of a dictionary is keep track of frequency count.
words = ['baby','shark','do','do','do','do','do','do']

frequency = {}
for word in words:
 if word not in frequency:
 frequency[word] = 1
 else:
 frequency[word] += 1
print(frequency)
Output:
{'baby': 1, 'shark': 1, 'do': 6}

We will use this code to do word
frequency analysis of the works of
Shakespeare!

10

References

1) Vanderplas, Jake, A Whirlwind Tour of Python, O’reilly Media.

11

