Introduction to Python

Dictionaries

Topics

|) enumerate()
2) Dictionaries

3) Iterating over a dictionary

Dictionaries

Python lists are useful but in some applications, it is nice to have a different
indexing scheme than the integers. For example, consider a database of
students' names and their grades:

Mike Smith: [70,81, 84]
Sarah Johnson: [88,71,85]

Suppose that this database has hundreds of records. It is hard to access
these students' grades using 0-based integer indexing.

Python dictionaries allow "values" to be accessed by meaningful "keys". In
the example above, we can access the database of grades by name(keys)
instead of integer index.

Dictionaries

Dictionaries are extremely flexible mappings of keys to values, and form
the basis of much of Python’s internal implementation.

They can be created via a comma-separated list of key:value pairs within
curly braces.The "keys" must be distinct.

data = {"Mike":3.1, "Sarah":3.6, "John":3.4}
print(data["Mike"]) # 3.1

gpa = datal["John"]

print(gpa) # 3.4
print(len(data)) # 3

Dictionaries

New items can be added to the dictionary using indexing as well.

data = {"Mike":3.1, "Sarah":3.6, "John":3.4}
data['Andy'] = 2.9
print(data)

Output:
{'Mike': 3.1, 'Sarah': 3.6, 'John': 3.4, 'Andy': 2.9}

print(datal'Courtney']) # KeyError
'Courtney' not in set of keys

Dictionaries
Modifying dictionary.

data = {"Mike":3.1, "Sarah":3.6, "John":3.4}

datal['Mike'] = 3.2

print(data) # {'Mike': 3.2, 'Sarah': 3.6, 'John': 3.4}
datal['Sarah'] += 0.2

print(data) # {'Mike': 3.2, 'Sarah': 3.8, 'John': 3.4}

Membership Operations

By default, membership operations checks keys of a dictionary.

scores = {'Mike':5, 'John':2, 'Sarah':4}

print('Mike' in scores) # True
print(5 in scores) # False
print('Michele' not in scores) # True

This will allow use to loop through a dictionary.

Iterating over keys a dictionary

It is easy to iterate over keys of the dictionary. The default loop iterates
over the keys.

grades = {"Mike":3.1, "Sarah":3.6, "John":3.4}
for x in grades:
print(x, end=" ")

Output:
Mike Sarah John

Iterating over keys a dictionary

The following compute the average GPA.

grades = {"Mike":3.1, "Sarah":3.6,

sum = 0
for student in grades:

sum += grades[student]
average = sum/len(grades)

"John":3.4}

Note: This [] syntax is the same as the
syntax for lists and strings!

Other languages, like Java, has different
syntax for accessing different data
structures.

Example of a Use for Dictionaries

One use of a dictionary is keep track of frequency count.
words = ['baby', 'shark','do','do','do','do', 'do', 'do"']

frequency = {}

for word words: We will use this code to do word
if word frequency: frequency analysis of the works of
Shakespeare!

frequency[word] = 1
else:
frequency[word] += 1
print(frequency)
Output:
{'baby": I, 'shark’: |, 'do": 6}

References

) Vanderplas, Jake, A Whirlwind Tour of Python, O’reilly Media.

