
Introduction to Python

Lists

1

Topics

1) Lists

2) List indexing

3) Traversing and modifying a list

4) Summing a list

5) Maximum/Minimum of a list

6) List Methods

2

Lists

A list defines a sequence of ordered objects(integers, floats, strings, etc…).
They can be defined with comma-separated values between square brackets.

L = [2, 3, 5, 7]

print(len(L)) # 4, len() also works with strings

L.append(11) # append to the end of the list

print(L) # [2, 3, 5, 7, 11]

3

Indexing

Indexing is a means the fetching of a single value from the list. This is a 0-based
indexing scheme.

L = [2, 3, 5, 7, 11]
print(L[0]) # 2

print(L[1]) # 3

print(L[5]) # index out of bounds error.

4

Lists can contain different types of objects

List can contain different types and even other lists.

L = [1, 'two', 3.14, [-2, 3, 5]]

print(L[0]) # 1

print(L[1]) # two

print(L[3]) # [-2, 3, 5]

5

Modifying a List

Indexing can be used to set elements as well as access them.

L = [2, 3, 5, 7, 11]

L[0] = 100

print(L) # [100, 3, 5, 7, 11]

L[2] = -4

print(L) # [100, 3, -4, 7, 11]

6

String Indexing
Indexing also works with strings. We can retrieve a character of a string by
specifying the index of that character, which is the integer that uniquely identifies
that character’s position in the string.

The built-in len() function returns the number of characters in a string.

message = "hello"

length = len(message)

print(length) # 5

print(message[0]) # h

print(message[1]) # e

print(message[4]) # o

print(message[5]) # error! out of range!

Note: On the AP exam,

The first index of the first

character of a string is 1 not 0.

String Indexing
Strings are immutable: once it is created, it cannot be changed!

message = "hello"

message[0] = "H" # ERROR! A string is immutable!

Negative indices can be used to access characters of a string. The last character
is at index -1, the second to last at index -2, etc…

print(message[-1]) # o

print(message[-2]) # l

Slicing

Slicing is extracting a portion of a list or string. We can slice a list or string
by specifying a start-index and stop-index, and the result is a subsequence
of the items contained within the slice.

Slicing can be done using the syntax:

my_list[start:stop:step]

where

start: index of beginning of the slice(included), default is 0

stop: index of the end of the slice(excluded), default is length of the list

step: increment size at each step, default is 1.

List Slicing

L = [10, -2, 1, 6, 2]

print(L[1:3]) # [-2, 1]

print(L[:3]) # [10, -2, 1]

print(L[1:]) # [-2, 1, 6, 2]

print(L[0:4:2]) # [10, 1]

print(L[:]) # [10, -2, 1, 6, 2]

print(L[::-1]) # [2, 6, 1, -2, 10]

String Slicing
language = "python"

print(language[0:4]) # pyth

 # 0 up to but not including index 4

print(language[:4]) # pyth, default start index at 0

print(language[4:]) # on, default end index is length of string

print(language[:]) # python, 0 to end of string

print(language[0:5:2]) # pto, step size of 2

print(language[::-1]) # negative step size traverses backwards

 # nohtyp

Traversing a list
We can traverse through a list using a for loop. We have seen this before with
strings! There are two options:

1) for each loop:

nums = [2, -1, 3, 4, -3]

for x in nums:

 print(x, end=" ")

2 -1 3 4 -3

2) loop using indices

nums = [2, -1, 3, 4, -3]

for i in range(len(nums)):

 print(nums[i], end=" ")

2 -1 3 4 -3

Looping through each value

Looping through each index

i takes on values: 0,1,2,3,4.

12

Looping Through Each Character by Value
As we saw previously, we loop through each character of a string:

message = "hello"

for letter in message:

 print(letter)

Output:

h

e

l

l

o

13

Looping Through Each Character by Index
Since each character of a string has index, we can also loop through the indices of
the string and access each letter by its index.

message = "hello"

for i in range(len(message)):
 print(message[i])

Output:

h

e

l

l

o

14

Modifying a list
Consider the following code that is intended to change all even numbers in a list to 0.

nums = [24, 3, 34, 6, -5, 4]
for x in nums:
 if x % 2 == 0:
 x = 0
print(nums)

Output:
[24, 3, 34, 6, -5, 4]

Note: The list is unchanged? Why? How can we fix it?

15

Modifying a list
Here's the correct code to change all even numbers in a list to 0. Compare the following
code to the previous slide.

nums = [24, 3, 34, 6, -5, 4]

for i in range(len(nums)):

 if nums[i] % 2 == 0:

 nums[i] = 0

print(nums)

Output:

[0, 3, 0, 0, -5, 0]

Thus, if we need to modify a list, we MUST loop through the indices!

 16

Creating a list
If you want to create a list containing the first five perfect squares, then you can complete
these steps in three lines of code:

squares = [] # create empty list

for i in range(5):

 squares.append(i ** 2) # add each square to list

print(squares)

Output:

[0, 1, 4, 9, 16]

 17

Counting Letters(Version 1)

Write a function which accepts a string and returns the number of “A”, “a”
in the string.

def countA(str):

 count = 0

 for i in range(len(str)):

 if str[i] == “a” or str[i] == “A”:

 count = count + 1

 return count

message = “abbA”

print(countA(message)) # 2
18

Counting Letters(Version 2)
There is another way to loop through letters of a string. Here’s the second
way to do the previous problem. Note that this version is much easier since
we are looping through each value of the string.

def countA(str):

 count = 0

 for letter in str:

 if letter == “a” or letter == “A”:

 count = count + 1

 return count

message = “abbA”

print(countA(message)) # 2
19

Functions on Strings

Functions we discussed so far are isolated, independent entities. Sometimes
functions are associated with some object and operates on the data of that
object. In this context, functions are called methods.

Strings is an example of a type of objects which contains methods. These
methods can be accessed through the dot notation applied to a string
variable or literal.

find(value) returns the lowest index of a substring value in a

string. If substring is not found, returns -1.

upper() and lower() returns a copy of the string capitalizing(or lower

casing) all characters in the string

String Methods

s = "Hi, Mike!"

index = s.find("Hi")

print(index) # 0, first letter’s index is 0.

print(s.find(" ")) # 3

print(s.find("Mike")) # 4

index2 = s.find("mike") # -1, not found

b = "python"

print(b.upper()) # PYTHON

print("JAVA".lower()) # java

String Methods

Note that upper(), lower() do not modify the original string but rather returns
a new copy of the string.

s = "HI MIKE"

s.lower() # returned value "hi mike" is lost

print(s) # HI MIKE (s is unchanged)

s = s.lower() # store the modified, returned string back in s

print(s) # hi mike

f-Strings

f-Strings is the new way to format strings in Python. (v 3.6)

Also called “formatted string literals,” f-strings are string literals that have an f at
the beginning and curly braces containing expressions that will be replaced with
their values.

name = “Mike”

gpa = 3.2

f_str = f“I am {name} with a {gpa} gpa.”

print(f_str)

print("I am " + name + " with a " + str(gpa) " gpa.”)

Output:

I am Mike with a 3.2 gpa.

I am Mike with a 3.2 gpa.

f-Strings

An f-string is special because it permits us to write Python code within a string;
any expression within curly brackets, {}, will be executed as Python code, and
the resulting value will be converted to a string and inserted into the f-string
at that position.

grade1 = 1.5

grade2 = 2.5

ave = f“average is {(grade1+grade2)/2}”

print(ave) # average is 2.0

This is equivalent but it is preferable to use an f-string.

average = “average is " + str((grade1+grade2)/2)

AP Exam

25

There will be questions on the AP exam which requires students to manipulate strings.

The exam will provide an API(application programming interface) for string

manipulation. A sample API below was given in previous exams.

The substring function may

take on different arguments

on the exam. Read

the API carefully as this

may vary year to year.

Algorithms to know

The following algorithms are useful. Know how to implement these algorithms!

1) Find sum of a list of numbers.

2) Find the average of a list of numbers.

3) Find the maximum/minimum of a list of numbers.

26

Sum of a list

Given a list, find the sum of its elements. We can do this by traversing through
the list using a for loop.

nums = [2, -1, 3, 4, -3]

s = 0

for x in nums:

 s += x

print(s)

Whenever we have a piece of code that accomplish a useful task, we should
put it in a function.

27

Sum Function
Write a function that accepts a list of numbers as a parameter and returns its sum.

def sum(nums):

 s = 0

 for x in nums:

 s += x

 return s

lst = [2, -1, 3, 4, -3]

print(sum(lst)) # 5

lst2 = [1, 5, 4, 2]

a = sum(lst2)

print(a) # 12

28

Average Function
Write a function that accepts a list of numbers as a parameter and returns its
average.

def average(nums):

 s = 0

 for x in nums:

 s += x

 return s/len(nums)

lst = [2, 5, 4, 3]

a = average(lst)

print(a) # 3.5

29

Conditional Summing

Write a function that accepts a list of numbers as a parameter and returns the
sum of all even numbers in the list.

def sum_even(nums):

 s = 0

 for x in nums:

 if x % 2 == 0:

 s += x

 return s

30

Find Maximum Function
Write a function that accepts a nonempty list of numbers as a parameter and returns its
maximum value. Does the code below work?

def maximum(nums):

 current_max = 0

 for x in nums:
 if x > current_max:

 current_max = x

 return current_max

lst = [-2, -5, -12, -3]

a = maximum(lst)

print(a) # 0 INCORRECT!

No! What if the list contains

only negative numbers?This function

returns 0 which is not even in the list!

31

Incorrect!

Find Maximum Function(Correct)
Here's the correct implementation of maximum. The minimum function is similar.

def maximum(nums):

 current_max = nums[0] # the first value is maximum

 for x in nums: # until a bigger value shows up
 if x > current_max:

 current_max = x

 return current_max

lst = [2, 5, 12, 3, 4, 11]

a = maximum(lst)

print(a) # 12

 32

List Methods

The following is a short list of useful list methods.

append(value) appends value to the end of the list

insert(index, value) inserts value at position given by index, shifts elements to

the right.

pop(index) removes object at index from list, shifts elements left and

returns removed object. Returns last element if index is

omitted. The index parameter is optional(default to last

element).

split() splits a string into a list. A separator can be specified. The

default separator is any whitespace. Note that this is a string

method not a list method.

33

List Methods

L = [3, "hi", -4, 6]

L.append(2) # L = [3,"hi",-4, 6, 2]

L.insert(1, "hello") # L = [3,"hello","hi",-4, 6, 2]

a = L.pop(3) # L = [3,"hello","hi",6, 2]

print(a) # -4

L.pop() # ok to not store popped value

print(L) # [3,"hello","hi",6]

34

split()
The split() method splits a string into a list. A separator can be specified. The
default separator is any whitespace.

fruits = "apple mango banana grape"

fruits_lst = fruits.split()

print(list_fruits) # [‘apple’, ‘mango’, ‘banana’, ‘grape’]

greeting = “hi,I am Mike,I just graduate.”

greet_lst = greeting.split(",")

print(greet_lst) # [‘hi’, ‘I am Mike’, ‘I just graduate.’]

nums = “4 24 12”

nums_lst = nums.split()

print(nums_lst) # [‘4’, ‘24’, ‘12’], these are still strings 35

AP Exam: Lists API

36

AP Exam: Lists API

37

AP Exam: Lists API

38

AP Exam: Lists API

39

Lab 1

Create a new repl on repl.it

1) Create this list and assign it to a variable
[3,41,62,87,101, 88]. Use a for loop to compute the sum.
Print out the sum.

2) Use a for loop to compute the sum of odd numbers from the
list above.

3) Use a for loop to compute the sum of values located at
even indices.(Use the len() function).

40

References

1) Vanderplas, Jake, A Whirlwind Tour of Python, O’reilly Media.

2) Luciano, Ramalho, Fluent Python, O'reilly Media.

41

	Slide 1: Introduction to Python
	Slide 2: Topics
	Slide 3: Lists
	Slide 4: Indexing
	Slide 5: Lists can contain different types of objects
	Slide 6: Modifying a List
	Slide 7: String Indexing
	Slide 8: String Indexing
	Slide 9: Slicing
	Slide 10: List Slicing
	Slide 11: String Slicing
	Slide 12: Traversing a list
	Slide 13: Looping Through Each Character by Value
	Slide 14: Looping Through Each Character by Index
	Slide 15: Modifying a list
	Slide 16: Modifying a list
	Slide 17: Creating a list
	Slide 18: Counting Letters(Version 1)
	Slide 19: Counting Letters(Version 2)
	Slide 20: Functions on Strings
	Slide 21: String Methods
	Slide 22: String Methods
	Slide 23: f-Strings
	Slide 24: f-Strings
	Slide 25: AP Exam
	Slide 26: Algorithms to know
	Slide 27: Sum of a list
	Slide 28: Sum Function
	Slide 29: Average Function
	Slide 30: Conditional Summing
	Slide 31: Find Maximum Function
	Slide 32: Find Maximum Function(Correct)
	Slide 33: List Methods
	Slide 34: List Methods
	Slide 35: split()
	Slide 36: AP Exam: Lists API
	Slide 37: AP Exam: Lists API
	Slide 38: AP Exam: Lists API
	Slide 39: AP Exam: Lists API
	Slide 40: Lab 1
	Slide 41: References

