
Introduction to Python
Functions

1

Topics

1) Functions
2) Function Inputs vs Outputs
3) Function Arguments
4) Flow of Program
5) Template for programs
6) String Methods

2

Example
Consider the following code which asks the user to enter a number and prints out
the absolute value of the number. This problem was a lab assignment in the last
lecture.

x = int(input(‘Enter an integer: ’))
if x >= 0:

 print(“The absolute value of”, x, "is", x)
else:

 print(“The absolute value of”, x, "is", -x)

Sample Output:
Enter an integer: -4
The absolute value of -4 is 4

3

Example
Now what if the program asks the user for two numbers and then compute their
absolute values? What do you think of the following code?

x = int(input(‘Enter an integer: ’))

if x >= 0:
 print(“The absolute value of”, x, "is", x)

else:
 print(“The absolute value of”, x, "is", -x)

x = int(input(‘Enter an integer: ’))

if x >= 0:
 print(“The absolute value of”, x, "is", x)

else:
 print(“The absolute value of”, x, "is", -x)

Note the redundancy!
We like to reuse code
without rewriting or
copying/pasting
code!

4

Functions
One way to organize Python code and to make it more readable and reusable is to
factor out useful pieces into reusable functions.

A function is a named group of programming instructions that accomplish a specific
task. It may have parameters and return values. If we want to perform the task, we
simply "call" the function by its name. A function may be called as many times as we
wish to redo the task.

The "30 seconds" button on the microwave is an example of a function. If we press
it(call it by its name), it will run the microwave 30 seconds. Later, if we want to heat
something else, we can press it again to run the microwave another 30 seconds.

In other programming languages, functions are also called procedures or
methods.

5

Example
We like to take the redundant code below and convert it to a function.

x = int(input(‘Enter an integer: ’))
if x >= 0:

 print(“The absolute value of”, x, "is", x)
else:
 print(“The absolute value of”, x, "is", -x)

x = int(input(‘Enter an integer: ’))

if x >= 0:
 print(“The absolute value of”, x, "is", x)
else:
 print(“The absolute value of”, x, "is", -x)

Let's factor out this
piece of code, convert
it into a function by
giving it a name!

Then we can call it
repeatedly if we wish
to run the code.

6

Functions
A function or procedure is a group of code that has a name and can be
called using parentheses.

A function may have parameters or input variables to the function.
Parameters are input variables that provide information to the function to
accomplish its task. Using parameters allows procedures to be generalized,
enabling the procedures to be reused with a range of input values or
arguments.

In Python, a function is defined using the def statement.

def function_name(parameters):
 block of code

7

Absolute Value
We like to take the redundant code below and convert it to a function called absolute().
def absolute(x):
 if x >= 0:
 print(“The absolute value of”, x, "is", x)
 else:

 print(“The absolute value of”, x, "is", -x)

several calls to abs()
absolute(-10) # The absolute value of -10 is 10

absolute(5) # The absolute value of 5 is 5

We placed the code
into a function named
absolute().
This block of code is
called the function
definition.

Now we can reuse
this code by calling on
absolute() with
different inputs!

The function definition
must precede any
function calls.

8

Output:
The absolute value of -10 is 10
The absolute value of 5 is 5

Absolute Value

def absolute(x):
 if x >= 0:

 print(“The absolute value of”, x, "is", x)
 else:

 print(“The absolute value of”, x, "is", -x)

absolute(-10)

absolute(5)

The first time absolute() is called, input x
variable has the value of -10

Once this function call is done executing.
This value of x is released from memory.

9

Output:
The absolute value of -10 is 10
The absolute value of 5 is 5

Absolute Value

def absolute(x):
 if x >= 0:

 print(“The absolute value of”, x, "is", x)
 else:

 print(“The absolute value of”, x, "is", -x)

absolute(-10)

absolute(5)

The second time absolute() is
called, a new variable x is created
with the value 5.

Once this function call is done
executing. This value of x is again
released from memory.

10

Output:
The absolute value of -10 is 10
The absolute value of 5 is 5

Function Outputs
The previous example prints out a message as part of its output. But what if another
programmer who wishes to use our function does not want that message printed? Or if
another programmer simply wants the output to be used in another calculation?

We typically want functions to output or return some answer. The answer can then be
printed in a message or used in a different calculation.

def absolute(x):
 if x >= 0:
 return x

 else:
 return -x

print("The absolute value of -10 is", absolute(-10))

the function returns or outputs 10
which is stored in the expression
absolute(-10)

11

Function Outputs
If a function returns a value, the function call expression represents the returned
value!
For example, below, the expression absolute(-10) is equal to the returned value of
10.

def absolute(x):
 if x >= 0:
 return x

 else:
 return -x

print("The absolute value of -10 is", absolute(-10))

the function returns or outputs 10
which is stored in the expression
absolute(-10)

This function notation is
perfectly consistent with
the math notation used
in algebra.

If f(x) = 3x, then the
expression f(5) is equal
to 15 and the expression
f(10) is equal to 30.

The expression
absolute(-10) is equal to
10. 12

Function Outputs

The output or returned value can be used in another calculation.

def absolute(x):
 if x >= 0:

 return x
 else:

 return -x

print("The absolute value of -10 is", absolute(-10))

x = absolute(-5) + 3
print(x) # 8

Here the returned value is used in
another calculation.

13

Function Outputs

def absolute(x):
 if x >= 0:

 return x
 else:

 return -x

print("The absolute value of -10 is", absolute(-10))

x = absolute(-5) + 3
print(x) # 8

Note: Python already has a built-in absolute value function called abs().

The important takeaway here is:
Functions should NOT print the
answer. It should RETURN the
answer!

Printing should be done outside the
function. Print the returned value.

14

Functions
Parameters are input variables of a procedure. Arguments specify the
values of the parameters when a procedure is called.

def add(a, b):
 return a + b

print(add(2, 4))
print(add(2)) # too few arguments
print(add(2, 4, 6)) # too many arguments

Function
definition.

Function
calling.

parameters

arguments

15

Functions Arguments (input)

def add(a, b):
 return a + b

a = add(2, 4)
print(a) # 6

In function calling, the actual arguments
2 and 4 are sent to the formal parameters
a and b respectively.

16

Functions Arguments (input)

def add(a, b):
 return a + b

a = add(2, 4)
print(a) # 6

Note that the returned value 6 is sent
back to the call expression add(2, 4).

This value add(2, 4) is stored in the
variable a.

The variable a is then printed to the
console.

17

6

Returned Value
A returned value from a function should be stored, printed or used in another
calculation. Be careful to avoid the error explained below!

def add(a, b):
 return a + b

a = add(2, 4) # returned value 6 is stored in a.
print(a) # 6
b = add(2, 4) - 3 # returned value 6 used in a calculation.

add(4, 6) # returned value 10 is neither stored nor printed
 # this value is lost! This is a common error!
 # This line of code effectively does nothing.18

AP Exam(Important)
Abstraction means removing unnecessary detail.We can press the gas pedal
to move a car forward without the need to understand the details of how an
engine work.

One common type of abstraction is procedural abstraction, which provides
a name for a process(function) and allows a procedure(function) to be used
only knowing what it does, not how it does it.

For example, we can use the sqrt function without knowing how it works.

import math
x = math.sqrt(23)

19

AP Exam(Important)

There are benefits to using procedural abstraction(function) in our code.

Procedural abstraction

a) allows code to be readable
b) Provides an opportunity for to give a name to a block of code(function)

that describes the purpose of the code block.
c) allows for code reuse and reducing the amount of duplicated code

20

AP Exam(Important)
Procedures(functions) use on the AP Exam:

21

which accepts a value from the user
and returns the input value. to display the value of expression, followed

by a space.

Flow of a Program
A Python script is executed line by line top to bottom. A function(procedure) call
interrupts the sequential execution of statements, causing the program to execute
the statements within the function before continuing. Once the last statement in the
function (or a return statement) has executed, flow of control is returned to the
point immediately following where the function was called.

def mystery(a, b):
 if a <= 5:
 print(a)
 return a + 2
 print(b)
 return b + “!”
x = mystery(4, “hello”)
print(mystery(10, “hi”))
print(x)

Function definitions are packaged into an executable
unit to be executed later.

The code within a function definition executes only
when invoked by a caller.

22

Output:
4
hi
hi!
6

Flow of a Program
A Python script is executed line by line top to bottom. A function(procedure) call
interrupts the sequential execution of statements, causing the program to execute
the statements within the function before continuing. Once the last statement in the
function (or a return statement) has executed, flow of control is returned to the
point immediately following where the function was called.

def mystery(a, b):
 if a <= 5:
 print(a)
 return a + 2
 print(b)
 return b + “!”
x = mystery(4, “hello”)
print(mystery(10, “hi”))
print(x)

23

Output:
4
hi
hi!
6

Flow of a Program

def mystery1(a, b):
 print(mystery2(a+b))
def mystery2(x):
 print(2*x)

 return x + 17

y = mystery2(4)
mystery1(3, 4)
print(mystery1(1, 2))
print(y)

24

A function that does not return a value
actually returns the value None.

Output:
8
14
24
6
20
None
21

Variables and Parameters are Local

An assignment statement in a function creates a local variable for the
variable on the left hand side of the assignment operator. It is called local
because this variable only exists inside the function and you cannot use it
outside.

def square(x):
 y = x * x # y only exists inside function

 return y
z = square(8)
print(z)

print(y) # NameError! name 'y' is not defined.

25

Functions calling other functions
Each function we write can be used and called from other functions.
def square(x):

 y = x * x
 return y

def sum_of_squares(x, y, z):
 a = square(x)
 b = square(y)

 c = square(z)
 return a + b + c

a = int(input())
b = int(input())

c = int(input())
result = sum_of_squares(a, b, c)
print(result) 26

The variables x and y are local variables in both functions
and may even have different values.

Even though they are named the same, they are, in fact,
very different.

Similarly, a, b and c in the sum_of_squares function are
different than a, b and c outside of it.

Sample Run:
-3
4
5
50

Python Program Template
declare and initialize global variables with file scope, these

variables exist everywhere in the rest of the file including inside

functions.

x = 3

function definitions

def func1():

 …

def func2():

 …

program logic flow starts here

ask for user inputs, call functions above, etc..

a = func1()

print(a)

From now on, when we write a
program, we will use this template.

27

Writing a Simple Program: Quadratic Roots
Let's write a full program that asks the user for three integers a, b and c which
represent the coefficients of a quadratic function of the form
𝑓 𝑥 = 𝑎𝑥! + 𝑏𝑥 + 𝑐 and outputs the number of real zeroes or roots of 𝑓 𝑥 .

def num_of_roots(a, b, c):

 discriminant = b ** 2 – 4 * a * c

 if discriminant > 0:

 return 2

 elif discriminant < 0:

 return 0

 else:

 return 1
a = float(input('Enter a:'))
b = float(input('Enter b:'))
c = float(input('Enter c:'))
numroots = num_of_roots(a, b, c)
print("This quadratic has", numroots, "real root(s).") 28

Lab 1: Math Calculations
Create a new repl on replit. Write a program that implement the functions
below. Test your functions by calling them and printing out their returned values.

area_rectangle: returns the area of the rectangle with length and width.
area_trapezoid: returns area of trapezoid with two bases and a height.
A = h(a + b)/2
area_triangle: returns area of a triangle given the sides: a, b and c.

fahrenheit_to_celsius: returns the temperature in celsius given the temperature in
fahrenheit.

29

Lab 1: Math Calculations
Sample Output for Lab1: The output doesn't have to be exactly like shown
below. Be sure to check that all the functions are implemented correctly.

Enter length of rectangle: 10

Enter width of rectangle: 2
Area of rectangle is 20

Enter side1 of triangle: 3
Enter side2 of triangle: 4
Enter side3 of triangle: 5
Area of triangle is 6.0

30

Lab 2: BMI
Create a new repl on replit. Write a program that asks the user to enter their
height in inches and weight in pounds and display the body mass index(BMI).
Implement the function bmi to calculate the bmi.

def bmi(height, weight):
 # implement this function to compute the bmi given the height
 # and weight.

ask the user to enter height
ask the user to enter weight
call the bmi function and display the result.

31

Lab 3: Day Of the Week
Create a new repl on replit. Write a program that outputs the day of the week for a given

date! You program must the program template discussed in this lecture.

Given the month, m, day, d and year y, the day of the week(Sunday = 0, Monday = 1, …,

Saturday = 6) D is given by:

Note: the / operator from the above equations is floor division // in Python. The
mod operator is %.

Use the template on the next page.
32

Lab 3: Day Of the Week
Use the following template.
def compute_day(month, day, year):

 """ This function computes the values given from the previous slide

 and returns an integer in the set {0,1,..,5,6}.

 """

def day_of_week(d):

 """ Given d which computed from compute_day above. This function returns

 a string according to the value of d: "Sunday" for 0, "Monday for 1,

 etc..

 """

ask users for month, day and year

call compute_day and day_of_week above

print out day of the week.
33

Lab 3: Day Of the Week
Your program should have output similar to the following:

Enter month: 10

Enter day: 27

Enter year: 2020

Day of the week: Tuesday

And try entering your birthday and test your parents!

34

References

1) Vanderplas, Jake, A Whirlwind Tour of Python, O’reilly Media.
2) Halterman, Richard, Fundamentals of Python Programming.

35

