
Algorithms

1

Algorithms
An algorithm is a finite set of instructions that accomplish a specific task.

Every algorithm can be constructed using combinations of sequencing,
selection, and iteration.

Sequencing is the application of each step of an algorithm in the order in
which the code statements are given. (for example, following a baking recipe
requires that steps are taken in a certain order)
Iteration is a repeating portion of an algorithm. Iteration repeats a specified
number of times or until a given condition is met.
Selection determines which parts of an algorithm are executed based on a
condition being true or false.

We will discuss some important algorithms in this lecture. 2

Sequential search
Linear search or sequential search algorithms check each element of a list, in
order, until the desired value is found or all elements in the list have been
checked. Implement sequential search using list which returns the index of the
target or -1 if it is not found.
def sequential_search(lst, target):

 for i in range(len(lst)):
 if lst[i] == target:
 return i

 return -1

a = sequential_search([3,0,5,1], 0) # a = 1
print(a) # 1

3

Sequential search
Linear search or sequential search algorithms check each element of a list, in
order, until the desired value is found or all elements in the list have been
checked. Implement sequential search using list which returns the index of the
target or -1 if it is not found.
def sequential_search(lst, target):

 for i in range(len(lst)):
 if lst[i] == target:
 return i

 return -1

a = sequential_search([3,0,5,1], 0) # a = 1
print(a) # 1
numbers = [4, 2, 3, 7 -12, 3, 56, 34]
print(sequential_search(numbers, 3)) # 2

4

Sequential search
Linear search or sequential search algorithms check each element of a list, in
order, until the desired value is found or all elements in the list have been
checked. Implement sequential search using list which returns the index of the
target or -1 if it is not found.
def sequential_search(lst, target):

 for i in range(len(lst)):
 if lst[i] == target:
 return i

 return -1

a = sequential_search([3,0,5,1], 0) # a = 1
print(a) # 1
numbers = [4, 2, 3, 7 -12, 3, 56, 34]
print(sequential_search(numbers, 3)) # 2

print(sequential_search(numbers, 100)) # -1
5

Binary Search
Note that the array below is sorted. How can we take advantage of this?

The binary search algorithm starts at the middle of a sorted data set of numbers
and eliminates half of the data; this process repeats until the desired value is
found or all elements have been eliminated.

1) Look at the middle of the array. If the target is found, we are done. Otherwise,
If the target is greater than that value, we can eliminate the left half of the
array. And If the target is less than the value, eliminate the right half.

2) Repeat with left or right half of the array accordingly.
6

7

Binary Search
Implement binary search. Data must be in sorted order to use the binary search
algorithm.

def binary_search(sorted_lst, target):
 min, max = 0, len(sorted_lst)-1
 while min <= max:

 mid = (min + max)//2
 if sorted_lst[mid] < target:

 min = mid + 1
 elif sorted_lst[mid] > target:

 max = mid – 1
 elif sorted_lst[mid] == target:
 return mid

 return -1
8

Sorting(not on AP)
sorting: Rearranging the values in an array or collection into a specific order
(usually into their "natural ordering").

• one of the fundamental problems in computer science
• sorts products on Amazon based on ratings or price
• sorts contacts on phone in alphabetical order

• can be solved in many ways:
• there are many sorting algorithms
• some are faster/slower than others
• some use more/less memory than others
• some work better with specific kinds of data
• some can utilize multiple computers / processors, ...

9

Sorting(not on AP)

10

11

Sorting(not on AP)

12

Sorting(not on AP)

Algorithmic Efficiency
A problem is a general description of a task that can (or cannot) be solved
algorithmically.

An instance of a problem also includes specific input. For example, sorting is a
problem; sorting the list (2,3,1,7) is an instance of the problem.

A decision problem is a problem with a yes/no answer (e.g., is there a path from A to
B?).

An optimization problem is a problem with the goal of finding the “best” solution
among many (e.g., what is the shortest path from A to B?).

13

Algorithmic Efficiency
Efficiency is an estimation of the amount of computational resources used by an
algorithm.

Efficiency is typically expressed as a function of the size of the input(e.g the size of the
list). Can either be worst-case complexity or average-case complexity.

An algorithm’s efficiency can be informally measured by determining the number of
times a statement or group of statements executes.

Different correct algorithms for the same problem can have different efficiencies. For
example, a sorting algorithm that requires more computations is slower than a different
sorting algorithm that requires less.

14

Example 1 of Algorithmic Efficiency
def sum(lst):
 s = 0
 for x in lst:
 s += x
 s += 1
 return s

Let's define efficiency as the number of times a math operation statement is executed. Let the size
of lst be n. What is the efficiency of the function sum as a function of n?
Answer: 2n

15

Example 2 of Algorithmic Efficiency
def sum(lst):
 s = 0
 for x in lst:
 s += x
 s += 1
 for x in lst:
 s -= 1
 return s
Let's define efficiency as the number of times a math operation statement is executed. Let the size of lst
be n. What is the efficiency of the function sum as a function of n?
Answer: 3n

16

Example 3 of Algorithmic Efficiency
def sum(lst):
 s = 0
 for x in lst:
 for y in lst:
 s += y
 return s

Let's define efficiency as the number of times a math operation statement is executed. Let the size
of lst be n. What is the efficiency of the function sum as a function of n?
Answer: n*n = n^2

17

Efficiency for Searching
Suppose we have a list of size n.

1) In the worst-case scenario, what is the number of comparisons needed to find
the target using sequential or linear search?
Answer: n

2) In the worst-case scenario, what is the number of comparisons needed to find
the target using binary search(when applied to a sorted list)?
Answer: Approximately log_2(n).

Note: The AP exam only requires that you know binary search is generally faster
than linear search when applied to a sorted list but not how much faster.

18

Exponential Complexity Problems

Algorithms with a polynomial efficiency(constant, linear, square, cube, etc.)
are said to run in a reasonable amount of time. They can be executed quickly on
a modern processor.

However, there exists important and practical problems for which there exists
no known polynomial time algorithm. Algorithms with exponential or factorial
efficiencies are examples of algorithms that run in an unreasonable amount of
time.
• For example, given a set of integers, find a subset that sums to zero. A brute-

force algorithm would try every possible subset. But there are 2^n different
subsets. This is an example of an exponential time algorithm. If n is large, even
the fastest computers would take too long.

19

Heuristic
Some problems cannot be solved in a reasonable amount of time because
there is no efficient algorithm for solving them. In these cases, approximate
solutions are sought.

A heuristic is an approach to a problem that produces a solution that is not
guaranteed to be optimal but may be used when techniques that are
guaranteed to always find an optimal solution are impractical.

For example, a file-organizing algorithm(sorting a folder based on file types e.g. pdf,
docs, jpegs) determines the content of a file based on a certain number of bytes in
the beginning of the file. This is an approximate solution since only a few bytes are
examined. But it is more practical and faster to run than examining every byte of
every file.

20

Computational Complexity for Sorting(not on AP exam)

Suppose we have a list of size n.

1) What is the approximate number of comparisons needed for selection sort?
Answer: The implementation of this algorithm uses 2 nested loops, with each loops
running n times. Thus, approximately n*n = n^2.

2) What is the approximate number of comparisons needed for insertion sort?
Answer: Similar to selection sort, the code uses 2 nested loops, with each loops
running n times. Thus, approximately n*n = n^2.

3) What is the number of comparisons needed for mergesort?
Answer: Approximately n*log(n). (slower than linear search(n) but faster than both
selection and insertion sort(n^2). 21

Selection sort runtime(not on AP exam)

22

Merge sort runtime(not on AP exam)

23

For a list of length 256000 items, selection sort takes
about 2.75 minutes but mergesort takes 1/10 of a second.

Exponential Complexity Problems

Algorithms with a polynomial efficiency(constant, linear, square, cube, etc.)
are said to run in a reasonable amount of time. They can be executed quickly on
a modern processor.

However, there exists important and practical problems for which there exists
no known polynomial time algorithm. Algorithms with exponential or factorial
efficiencies are examples of algorithms that run in an unreasonable amount of
time.
• For example, given a set of integers, find a subset that sums to zero. A brute-

force algorithm would try every possible subset. But there are 2^n different
subsets. This is an example of an exponential time algorithm. If n is large, even
the fastest computers would take too long.

24

Decidability

A decidable problem is a decision problem for which an algorithm can be
written to produce a correct output for all inputs.
• E.g. Is the number even?

An undecidable problem is one for which no algorithm can be
constructed that is always capable of providing a correct yes-or-no answer.

An undecidable problem may have some instances that have an
algorithmic solution, but there is no algorithmic solution that could solve
all instances of the problem.

Alan Turing, considered by many to be the father of computer science, proved
that there exists undecidable problems. An example he posed is the Halting
Problem.

25

The Halting Problem(optional)
Can you write a program that takes the source code of another program and some
input and returns whether the program will terminate(not go into an infinite loop)
with the given input?

def halting(function, input):
 # returns whether the function terminates with
 # given input.
 # Is there an implementation of this function?

26

Example(optional)
IF the halting function can be implemented, it will give the following outputs for the sum
function(sum 1 to 10 with step size= increment).
def sum(increment):
 x = 1
 while x <= 10:
 x += increment
 return x
print(halting(sum, 1)) # True
print(halting(sum, -1)) # False (infinite loop)

Alan Turing proved that such a function(halting) does not exist(cannot be
implemented). Alan Turing is portrayed by the incredible Benedict Cumberbatch in
the movie "The Imitation Game".

27

Simulation

Computer simulation is the process of mathematical modelling, performed on a
computer, which is designed to predict the behaviour of, or the outcome of, a real-
world or physical system.

Simulations often mimic real-world events with the purpose of drawing inferences,
allowing investigation of a phenomenon without the constraints of the real world.

Simulations are most useful when real-world events are impractical for experiments
(e.g., too big, too small, too fast, too slow, too expensive, or too dangerous).

For example, instead of letting an untrained pilot fly an actual plane, the pilot can
learn by using a flight simulator.

28

Simulation

The process of developing an abstract simulation involves removing specific details
or simplifying functionality.

Simulations can contain bias derived from the choices of real-world elements that
were included or excluded.

Simulations facilitate the formulation and refinement of hypotheses related to the
objects or phenomena under consideration.

Random number generators can be used to simulate the variability that exists in the
real world.

29

Algorithms to know for AP Exam
You should know how to implement(write the code for) the following
algorithms. The AP exam may give you the code for an algorithm and ask you to
find the error or explain what it does.

1) Finding an item in a list(sequential search).
a) Given a list and an item, return whether(True or False) the item is in the list
b) Give a list an an item, return the index of the item in the list(-1 if not found).

2) Compute the sum or average of a list of numbers.
3) Find the minimum or maximum value of a list of numbers.

30

