Digital Audio Processing with Python
Part |: Audio Basics




»))Cﬁi”ﬁ“ﬁi Toag

Pressure-time plot at a specific location

Compression
p Rarefaction

\ /\ / /\ Average
\/ \/ \J o\

Time

Air pressure
deviation

Figure taken from [Meinard Miiller,
Fundamentals of Music Processing,

Figure 1.17, Springer 2015] ../



w4

nalog to Digital Audio

-

¢

\

Sampling the
analog signal s(t)

A s(t)

Digital Processing

- Effects
- Rlters
- Conversion

M}C

Analogue

|

The microphone

converts acoustic
energy to electrical

energy.

il

pg

-/

Electrical analog signal is

The array of sampled

values from the
electrical signal is

sampled and convert to an

array of numbers via
ADC(Analog to Digital
Converter).

digital audio.

N’

o

J \

</
/



%A\nalog to Digital Audio

o’

Sampling rate = 44,100 samples per second (CD quality)

A s(t) analog signal s(t) = digital signal
{y0,yl,y2,...,yn}
array of |6-bit values(bit depth)
‘ | { ‘ [ T ‘ [ ‘ l t (I bit for sign, |5 bits for value)

>

|

This allows for easy recording
(just stores a list of numbers) of
audio!

v <% v
N’ |




= —
{IélayA List of Numbers asOA_udio —

file.txt

It-is amazing that a digital sound file is 5

simply an array or list of numbers! 38

The "file.txt" file on the right is a list 2
of numbers sampled from an audio =z
recording at the rate of 44,100 23

samples per second. 1

Let's load them using Python.Then =

send them to the speakers!



o/ N—
\/AayA List of Numbers as Audio @

-

from IPython.display import Audio
The following code is

best run in a Jupyter
notebook.

import numpy as np
import matplotlib.pyplot as plt
ys = np.loadtxt("file.txt")

print(ys)
array([ 37., 36., 34., ..., 246., 262., 275.])

Audio(ys, rate = 44100) ®

"~/
See the Jupter Notebook Lab for this lecture to play the above
audio. - w0 “A y,



= —
{IélayA List of Numbers as Audio -

file.txt
e B7

Physics behind the following explanation A
35
is beyond the scope of this course. 5
26
2
20
The numbers here are proportional to the 19
24
instantaneous velocities of the speaker cone. 2
23
(Smith) s

This means that your speaker has to move 44,|00 @

times a second to faithfully reproduce this

piano note sound! v\



\{ﬁeriod,AmpIitude and Frequency

~A signal that exhibits the same repeated pattern(cycle) is periodic.

1
frequency

period =



- \ — 4

\/An Ex;mple

o, o’
~Period = 1/3 sec per cycle Frequency = 3 cycles per second
1
) /\ /‘\ /‘\
0 01 02 03 04 O 06 /0.7 08\ 09 1.1
-0.
o’
=1




N

-

| \o/
\/S/ine and Cosine Wave

y = sin(t).




-y 4

x{finusoids

~Both the y = sin(t)and y = cos(t) completes one cycle in 27
seconds:

y = sin(t),t € |0, 27] (one cycle in 27 seconds)
y = sin(27t),t € [0,1] (one cycle in 1 second = 1 Hz)
y = sin(27 ft),t € [0,1] (f cycles in 1 second = f Hz)

v <Y O
N

"/

Y



{Iieal Sinusoids

~In general, the sinusoids ¢ = a sin(27 ft) and ¥ = a cos(27 f1)

has amplitude = a, frequency = f in Hz,

. 1.
eriod = — 1n seconds
9

f

Note: For simplicity, we'll ignore the phase of the sinusoids although
the phase is an important attribute in digital audio/signal processing.
Here's the full sinusoid with phase "phi":

y = asin(27 ft + ¢)

N’ 2
N



) S
%A\n Example

-

Suppose you have the signal Yy — 3 Sin(27T4t).

Find the amplitude, frequency and period.

amplitude = 3
frequency = 4 Hz
period = |/4 sec



| \&Z N—
\/f’Iotti’ng Functions
o’

In the previous lectures, we used the Python and the matplotlib library
“to plot images. Now we will use it to plot functions.

Let's plot ¥ =sin(t),¢ € [0,27] o
The five points include
import matplotlib.pyplot as plt the two endpoints.

# generate 5 equal-spaced
# samples in interval [0, 2*pi] /// \\\\\

# more samples = better graph 100 1
ts = np.linspace(@, 2*np.pi, 5) -

# apply the sin function to samples 000 |

ys = np.sin(ts) -0.25

-0.50 A

# plOt it -0.75
fig, ax = plt.subplots() B e e e SR S
ax.plot(ts, ys) v \U/ 0



\o.” -/

\{éore Samples

o

Increasing the number of samples generate a smoother graph. Below
uses 50 equally-spaced samples.

100

import matplotlib.pyplot as plt 075 |
ts = np.linspace(@, 2*np.pi, 50) 0.50 -

. 0.25 -
ys = np.sin(ts) 200 |

fig, ax = plt.subplots() ~0.25 -

ax.plot(ts, ys) B

-0.75 A1
-1.00 -




—Middle C Q

~Middle C (or C4) has the frequency 261.6 Hz.

y(t) = sin(27 - 261.6 - t), ¢ € [0, 2.

WEe'll simulate the above sound using Python in the lab for this lecture
and will hear that it simulates the sound generated by a tuning fork.

Pressure-time plot at a specific locatio

Compr R efaction

//\
v v \VARRE




% Major @

The C major chord C-E-G has frequencies 261.6 Hz, 329.6 Hz, 392 Hz.
The analog signal for this chord is

y(t) = sin(2m - 261.6 - t) + sin(27 - 329.6 - £) + sin (27 - 392 - ).

Let's simulate these pure tones in Python.



- -/

Fliddle C

S

~Let's generate a 2 seconds interval of the pure Middle C tone(261.6
Hz) sampled at the frequency rate of 44100 Hz.

import matplotlib.pyplot as plt

fs = 44100

L =2 # in seconds

N=fFfs %L # total samples

ts = np.linspace(@, L, N, endpoint=False)
ys = np.sin(2 * np.pi * 261.6 * ts)

# create Audio

Audio(ys, rate=fs)

# plot it

fig, ax = plt.subplots()

ax.plot(ts, ys) v Y - 9



-’ ~—
%ﬁoudness vs Pitch 9

~“Loudness is our brain’s perception of amplitude.

Pitch is our brain’s perception of frequency.
* Our perception of pitch is based on the logarithm of frequency.

* The interval between two notes is the perceived difference
between the two pitches.

* As a result, the interval we hear from two notes depends on the
ratio of their frequencies, not the difference.



%ﬁundamental Frequency and Overtones

~pure tone = one frequency
Most sounds are more complex.

E4 piano note = supposition of many frequencies: 330 Hz, 660 Hz, 990
Hz, 1320 Hz and 1650 Hz.

Fundamental frequency = 330 Hz.
Overtones or Harmonics = 660 Hz, 990 Hz, 1320 Hz, 1650 Hz.

N



%fime vs Frequency Domains

-

In the time domain, the voltage/current signal is a function of time.

In the frequency domain, the signal is represented as a function of
frequencies that are present in the signal.



</
ime Domain

-

~The signal in the time domain is very difficult to analyze. It is hard to
know what sound is generated by the plot below.

The right plot is the zoomed in version of the left.

0.4
0.2 1
_0.2_
0.4
0.0 01 02 03 0.4 05 0.6 0.0000 0.0025 0.0050 0.0075 0.0100 0.0125 0.0150 0.0175 0.0200
Time(in seconds) Time(in seconds)

— b, W



) \o/ 4
\{I{requency Domain <

~Converting the signal into

2000 +

its frequency domain allows

us to understand its frequency

1500 -

content.

~
L 1000 4

What chord is this!?

500 -

440 Hz = A4, 880 Hz = A5, l

1320 Hz = E6, 1760 Hz = A6, 0 J} JL l JL —

2200 Hz = C#7 o W00 o 200 20 000
The set of frequencies in a signal and their magnitudes is called the -

spectrum of the signal.
- \./ ~ ,
N’ | Y



- )4
\-/éiscrete Fourier Transform (DFT) )

-

~The Discrete Fourier Transform is an equation that converts the
time domain signal into its frequency domain equivalence.The
Inverse Discrete Fourier Transform is its inverse.

2000 4
1500 4
E 1000 +
500 -

. | l J ’

I D F T o A JL - A
Ti . 0 560 10'00 15‘00 20|00 25|00 3000
ime(in seconds) Frequency (Hz) /

Time Domain “ Fréquency Domain



=4
~»{Spectrum Analyzers

~—r




me portant Take Aways

—

"’ ~—

|) Digital audio is simply sampling from a continuous, analog function
at some sampling rate producing an array or list of numbers.

2) Sinusoids take on the formy = a sin(2w ft + ¢)

3) Pitch is our brain’s perception of frequency. (logarithm scale)
* fundamental frequency vs harmonics

4) Time and Frequency domains are two equivalent representations of
a signal.

5) The Discrete Fourier Transform and the Inverse Discrete Fourier
Transform allows us to go back and forth between representations.

e \/ D,



) oS
\{fabs

Download the Jupyter Notebook from my website and work through
the problems.



{Iiefe rences

~|) Miiller, Meinard, Fundamentals of Music Processing, Springer 2015.
2) Downey, Allen, ThinkDSP, Green Tea Press 2012.

3) Smith, Julius, The Mathematics of the Discrete Fourier Transform,
W3K Publishing 2007.

4) Loy, Gareth, Musimathics,Volumes | and 2.The MIT Press 201 I.

5) Newman, Mark, Computational Physics, Createspace Independent
Publishing Platform 2012.

6) Soklaski, Ryan. MIT Lincoln Lab Researcher. Beaver Works Summer
Institute.



