
Understanding Data
Part 2

Images and Compression

Bitmap
An image is 2D grid of squares(bitmap), where each square is filled with only one
color; this is kind of structure is called a raster graphics image.

Each of these small squares, called a pixel, can be filled with exactly one color.
Computers use additive color mixing to produce colors. Primary colors are red,
green and blue(RGB)

Typically, bitmaps use 24-bit(3 bytes) for colors.

- 8 bits for each of the three primary colors.

- each color has values 0 to 255.

- 24-bit equals approximately

 2^24 = 16.8 million colors.

Red Green Blue(RGB) model

Metadata

The pixels of an image is its data. An image may contain some metadata(data that
describes a file's data) such as width, height, size, location of the image.

Metadata allow data to be structured and organized.

Metadata are used for finding, organizing, and managing information. Metadata can
increase the effective use of data or data sets by providing additional information
about various aspects of that data.

Changes and deletions made to metadata do not change the primary data.

RGB Model

As we will see later in this lecture, this image can be represented by a

three-dimensional Numpy array of shape (7, 10, 3). The 7 represents 7 rows; the 10

is for 10 columns and the 3 is for three components: red, green blue.

Resolution
Raster graphics image has to be made up of a grid of squares, but how big
should each square be?

the resolution of an image, or the amount of information stored in the image

- same image size but smaller pixel size equals higher resolution(more detail)
and therefore larger number of pixels in the image.

- for example, the left image below is 16 pixels by 16 pixels resolution but the
right image is a higher resolution 512x512.

Lossless Compression
What would the bitmap data look like for the image below? A lot of the data would be the
same! Is there a way to encode the image with an abbreviation for “500 black pixels”
rather than listing each pixel individually?

Data compression can reduce the size(number of bits) of stored data. CompuServe
develops GIF, or the Graphics Interchange Format, in 1987.

• can be pronounced “GIF” or “JIF”

Unlike bitmaps, GIFs are compressed: can represent exactly the same information as some
bitmaps using a smaller number of bits essentially, if two

pixels that are horizontally adjacent are exactly the same, then

GIF compresses the data.

This method is called lossless compression: reducing number of bits stored while
guaranteeing complete reconstruction of the original data, i.e, no data is lost. Thus few bits
does not necessarily mean less information.

Besides images, you may have used RAR, ZIP, GZIP, LZW to compress any file.

Lossy Compression
While lossless compression preserves all of a file's data, lossy compression throws away
some data in the interest of compressing the file even more.

Lossy data compression algorithms can significantly reduce the number of bits stored or
transmitted but only allow reconstruction of an approximation of the original data.

Effective lossy compression should preserve the essential data. You use effective lossy
compression every time you text someone!

Hey wat r u doin tmrw? I wntd 2 go 2 c Ben.(43 characters)

Hey, what are you doing tomorrow? I wanted to go to see Ben.(57 characters)

(compressed by about 25%.)

(you can “probs” do even better.)

GIF uses lossless compression

JPEG(Joint Photographic Experts Group), for example, uses lossy compression.

PNG(Portable Network Graphic) is another popular format.

Data Compression
The amount of size reduction from compression depends on both the amount of
redundancy in the original data representation and the compression algorithm
applied.

Lossy data compression algorithms can usually reduce the number of bits stored
or transmitted more than lossless compression algorithms.

In situations where quality or ability to reconstruct the original is maximally
important, lossless compression algorithms are typically chosen.

In situations where minimizing data size or transmission time is maximally
important, lossy compression algorithms are typically chosen.

Comparison(Optional)
Like GIF, PNG uses lossless compression, and like JPEG, PNG uses 24 bits for
color.

Another feature of the PNG format is support for alpha, or transparency. BMP
and JPEG, on the other hand, don't have a channel devoted to
transparency.

GIF does have the distinct advantage of supporting animation achieved by
repeatedly showing a series of frames.

Comparison(Optional)

Summary of these formats. The alpha channel is one reason .png files are
popular in game images(Sprites).

Vector Graphics

If a raster graphics image is scaled larger, the image will appear pixelated.

Vector graphics can scale without losing quality.

Unlike raster graphics, vector graphics doesn't involve turning an image into
a grid and storing the values of individual pixels.

Instead, vector graphics stores images using mathematics.
For example, let's say we want to represent a circle. In raster graphics, we'd create a grid
of squares and then trace out a circle by filling in squares with some color.

Using vector graphics, we'd instead say that the equation for a square looks something
like x^2 + y^2 = r^2.

We can create a raster graphic simply by picking a size for the image, then using the
equation to figure out which pixels should be colored.

This representation doesn't depend on any pixels. If we want to create a larger circle,
we can just pick a larger value for r, and our equation will create a larger circle
without any loss in quality.

Scalable Vector Graphics

Scalable Vector Graphics(SVG) is an example of a vector graphic.

Notice the difference below between a JPEG and a SVG after some rescaling.

In the powerpoint version

of this slides, you can play

around with the SVG on

the right.

Numpy

Python is currently one of most popular languages. It has many optimized
libraries for working with data.

Numpy is a Python library that provides a high-performing
multidimensional array object(matrices) and mathematical operations to
work with these arrays.

import numpy as np

a = np.array([1,2,3,4])

b = np.array([[1,2,3,4], [5,6,7,8]])

print(a.shape) # (4,)

print(b.shape) # (2, 4)

print(b.dtype) # int64

Numpy arrays can only store data of a

single type and are super fast.

Python lists can hold objects of

different types and are very slow.

np is an alias for numpy

Numpy

import numpy as np

a = np.array([[1,2,3,4],

 [5,6,7,8],

 [9,10,11,12]])

print(a[0, 0]) # 1

print(a[1, 3] # 8

print(a[:, 1:3])

[[2, 3],

 [6, 7],

 [10, 11]]

Similar to Python lists, slicing

works with Numpy arrays!

Note the use of commas, if it

was a 2D Python list:

print(a[0][0])

Numpy uses commas(tuples)

for indexing.

all rows, columns 1 and 2.

Matplotlib

Matplotlib is built on top of Numpy and provides plotting capabilities. It is
recommended that you use the Jupyter Notebook when working with
these libraries.

import matplotlib.pyplot as plt

img = plt.imread("flower.jpg")

print(img.shape)

(859, 840, 3)

rows

(height)

columns

(width)

RGB channel

Matplotlib

In Matplotlib, the Figure object is used to contain one or more sets
of Axes objects. Data is plotted within a given set of axes.

The subplots() function can be used to create a figure along with a specified
layout of axes.

import matplotlib.pyplot as plt

fig, ax = plt.subplots()

Figure

object
Axes object

By default, subplots will

create a figure with a

single set of axes; calling it

will return the figure

object and its axes object

in a tuple.

imshow()

import matplotlib.pyplot as plt

img = plt.imread("flower.jpg")

print(img.shape) # (859, 840, 3)

fig, ax = plt.subplots()

ax.imshow(img)

imshow() displays the 2D

grid of pixels as an image.

Pixels
import matplotlib.pyplot as plt

img = plt.imread("flower.jpg")

print(img.shape) # (859, 840, 3)

fig, ax = plt.subplots()

ax.imshow(img)

(0,0) pixel, slicing all colors

print(img[0,0,:])

array([255, 255, 255], dtype=uint8)

The (0, 0) pixel is at the top

left corner of the image.

Decomposing an Image
What would you guess the R, G and B components of the yellow pixel at the
center of the flower?

Since red + green is yellow. We should expect high components in the R and G
channels and a low number for the B channel.

print(img[400,400,:])

array([185, 135, 0], dtype=uint8)

Decomposing an Image
How about a pixel on one of the white petals?

Since red + green + blue is white. We should expect high components in all R, G
and B channels.

print(img[200,400,:])

array([218, 222, 225], dtype=uint8)

Decomposing an Image
Let write code to decompose our flower image into its individual components.

import matplotlib.pyplot as plt

img = plt.imread("flower.jpg")

same shape as img, all zeroes

img_red = np.zeros(img.shape)

img_green = np.zeros(img.shape)

img_blue = np.zeros(img.shape)

extract all rows, all columns, but only one channel at a time

img_red[:, :, 0] = img[:, :, 0] # red channel

img_green[:, :, 1] = img[:, :, 1] # green channel

img_blue[:, :, 2] = img[:, :, 2] # blue channel

Decomposing an Image
The following code continues from the previous slide:

fig, axs = plt.subplots(nrows=1, ncols=3, figsize=(15,5))

axs[0].imshow(img_red)

axs[1].imshow(img_green)

axs[2].imshow(img_blue)

Creates 3 Axes objects using

1 row and 3 columns layout.

(width, height) of

Figure object

Decomposing an Image(Optional)
We can write the previous code using a for loop instead.

import matplotlib.pyplot as plt

img = plt.imread("flower.jpg")

fig, axs = plt.subplots(nrows=1, ncols=3, figsize=(15,5))

for c in range(3):

 temp_img = np.zeros(img.shape)

 temp_img[:,:,c] = img[:,:,c]

 axs[c].imshow(temp_img)

See the next slide for the output.

Creates 3 Axes objects using

1 row and 3 columns layout.

(width, height) of

Figure object

Sum of Its Parts

High red, high green

component and no blue

component gives yellow!

Sum of Its Parts

High red, high green

component and high blue

component gives white!

RGB to Grayscale
Many image software allows you to convert your image to a black and white version.
This amounts to convert the tuple (R, G, B) to one grayscale number.

Two common algorithms found in some software uses the average method or the
luminosity method. (See, for example, the free, open source, image manipulation
program called GIMP).

The average method simply averages the R, G, B components:

 (R + G + B) / 3

The luminosity method computes a weighted average taking into account human
perception of lightness(for example, human are more sensitive to green, so green has
a larger weight):

0.21* R + 0.72 * G + 0.07 * B

RGB to Grayscale
In your homework, you'll write

Python code to do the following

conversion to grayscale.

The left image uses the average

method, the right uses the luminosity

method.

The luminosity is the

default method in

GIMP.

Tint(Optional)
To tint an image is to mix its colors with white. This will increase the lightness of
the image.

In your lab, you will write a Python function, which takes an image and a
percentage value as a parameter. Setting 'percentage' to 0 will not change the
image, setting it to one means that the image will be completely whitened.

For example, suppose a pixel with RGB components of [0.80, 0.60, 0.40]. Tinting
it by 25% means that the pixel is now [0.85, 0.70, 0.55].

References

1) Part of this lecture is taken from a lecture from an OpenCourseWare
course below.

Computer Science E-1 at Harvard Extension School

Understanding Computers and the Internet

by Tommy MacWilliam.

2) The formulas for converting RGB to grayscale can be found in the GIMP
documentation: https://docs.gimp.org/2.6/en/gimp-tool-desaturate.html

https://docs.gimp.org/2.6/en/gimp-tool-desaturate.html

	Slide 1: Understanding Data Part 2
	Slide 2: Bitmap
	Slide 3: Red Green Blue(RGB) model
	Slide 4: Metadata
	Slide 5: RGB Model
	Slide 6: Resolution
	Slide 7: Lossless Compression
	Slide 8: Lossy Compression
	Slide 9: Data Compression
	Slide 10: Comparison(Optional)
	Slide 11: Comparison(Optional)
	Slide 12: Vector Graphics
	Slide 13: Scalable Vector Graphics
	Slide 14: Numpy
	Slide 15: Numpy
	Slide 16: Matplotlib
	Slide 17: Matplotlib
	Slide 18: imshow()
	Slide 19: Pixels
	Slide 20: Decomposing an Image
	Slide 21: Decomposing an Image
	Slide 22: Decomposing an Image
	Slide 23: Decomposing an Image
	Slide 24: Decomposing an Image(Optional)
	Slide 25: Sum of Its Parts
	Slide 26: Sum of Its Parts
	Slide 27: RGB to Grayscale
	Slide 28: RGB to Grayscale
	Slide 29: Tint(Optional)
	Slide 30: References

