
Introduction to Python
Object-Oriented Programming

Topics

1) Classes
2) Class vs Object
3) __init__(dunder init)
4) Functions vs Methods
5) self
6) Importing modules

An Example
So far, our data has been one piece of information: an int, a float, a string.

Suppose we are writing a program that manages a database of students. We need
a data type that contains information about a student.

A student has more than just one piece of information: name, age, id, address,
etc…These collectively are the data of a student.

A student might have some functionality: ability to print personal information,
change their address, update school information.

We like a data type that can bundle data and functionality into one variable.
A class bundles together data (instance variables or attributes) and functionality
(functions).

An Example of a class

class Student:

def __init__(self, name, id):

self.name = name

self.id = id

def print_info(self):

print(self.name, self.id)

s1 = Student("Mike Smith", 34323)

s2 = Student("Sarah Jones", 67432)

print(s1.name) # Mike Smith

print(s2.name) # Sarah Jones

print(s1.id) # 34323

s1.print_info() # Mike Smith 34323

s2.print_info() # Sarah Jones 67432

We'll discuss "self" later in the slides.

Class definition.

This class Student can
then be used to create
multiple Student objects.

Each Student object has
data(name, id) and
functionality(print_info).

To access data/functionality,
the dot notation is used.

Class vs Objects

A class bundles together data (instance variables or attributes) and
functionality (methods).

Thus, in the previous example, Student is a class and s1 and s2 are two of its
objects.

OOP/OOD

Object-Oriented Programming(OOP) is a programming paradigm based
on the concepts of objects which bundles together data(in the form of
instance variables) and functionality or behavior(in the form of methods).

Many popular languages are object-oriented(C++, Java, Javascript, Python).

In OOP, programs are made up of many objects and a program run is the
interaction of these objects.

Custom Classes

A class bundles together data (instance variables or attributes) and
functionality (methods).

A list has data(the elements of the list). It also has methods that manipulate
those data(append, insert, pop, remove, etc…).

The classes int, bool, str, list, tuple, etc… are built-in classes.

Python provides the ability for programmers to design their own
classes(custom classes).

Class

We like to be able to build our own classes to represent objects relevant to
our game or application.

A game might have a Character class, from which we may create several
Character instances or objects.

This reusability feature is important especially when we need to create
many objects(for example enemies) with similar data and behaviors.

Examples

Suppose you are writing an arcade game. What are some useful classes and
their corresponding objects?

Example:
The Character Class represents characters in the game.
Variables/Attributes/Data: name, position, speed.
Behavior/Methods: shoot(), runLeft(), runRight(), jump().

Objects: From the same blueprint, the Character class, we can create multiple
Character objects.

Examples
Your game might have more than one classes. Each class can have many objects
of that class or type.

Classes: Character, Boss, Tile, Bullet.

Objects:
1) You may have one player object from the Character class.
2) Several Boss objects, one for each level.
3) A set of Tile objects for the the platforms on which the game objects walk.
4) Many Bullet objects are created as Character or Boss objects shoot.

Class Declaration
A class is declared with the keyword class followed by the class name.

class ClassName:

To create and initialize our instance variables, we need to define a special
method called __init__(double underscore init or "dunder init"). This
method is sometimes called the constructor.

The Character Class
An example of a class.

class Character:

def __init__(self, i_name, i_x, i_speed):
self.name = i_name

self.x = i_x
self.speed = i_speed

Constructor: init is a special method that
creates and initializes the instance variables(or attributes)
(pronounced "dunder init" (double underscore init))

instance variables
or instance
attributes
(use self with dot
notation)

The self parameter is automatically set
to reference the newly created object. It
can use another name but "self" is the
convention.

A Class Diagram

Character

name
x
speed

__init__(self, name, x, speed)
move(self)

Here's a class diagram that can help you visualize a class.

name of class

attributes or instance variables

instance methods

Class

class Character:

def __init__(self, i_name, i_x, i_speed):
self.name = i_name

self.x = i_x
self.speed = i_speed

p = Character(“John”, 10, 4)

2) The self parameter is now
pointing to the newly
created Character object or instance

1) An object is first
created in memory.
Then __init__ is called
and the address of
this object is sent to self.

3) The self reference is then
used to create and initialize the
other attributes or variables of
the object.

In this case: name, x and speed
are the three attributes of the
Character object.

Class

class Character:

def __init__(self, i_name, i_x, i_speed):
self.name = i_name

self.x = i_x
self.speed = i_speed

p = Character(“John”, 10, 4)

print(p.x, p.speed) # accessing attributes: 10 4
p.speed = 15 # modifying an instance attribute

print(p.speed) # 15

4) After all instance
variables are initialized, the
address or reference of the
object is returned(to p).

game.py
class Character:

def __init__(self, i_name, i_x, i_speed):
self.name = i_name

self.x = i_x
self.speed = i_speed

p = Character(“John”, 10, 4)
print(p.x, p.speed) # accessing attributes, 10 4

p.speed = 15 # modifying an instance attribute
print(p.speed) # 15

1) Character is a class or type.
2) p is an instance of the Character class.
3) p is an object of the Character class.
4) name, x and speed are attributes of the
object.

Function vs Methods

A function defined inside of a class is called a method(instance method).

We saw that __init__ is one example of a method.

The first parameter of an instance method refers to the instance or object being
manipulated. By convention, we use "self" for this first parameter.

Note: In addition to instance methods, Python supports class methods and
static methods. We won't discuss these in this class.

game.py
class Character:

def __init__(self, i_name, i_x, i_speed):
…

def move(self):
self.x += self.speed

p = Character(“John”, 10, 4)
p.move()
print(p.x) # 14
e = Character(“Sarah”, 100, -5)
e.move()
print(e.x) # 95
main()

move() is an instance method. The
first parameter of a method(self)
refers to the instance being
manipulated.

In this case, p is being moved.

We have seen this notation
before. For example:

a = [1, 2 ,3]
a.pop()

game.py

class Character:

def __init__(self, i_name, i_x, i_speed):
…

def move(self):
self.x += self.speed

p = Character(“John”, 10, 4)
p.move()
print(p.x) # 14
e = Character(“Sarah”, 100, -5)
e.move()
print(e.x) # 95

In this case, e is being moved.

game2.py
class Character:

def __init__(self, i_name, i_x, i_speed):
self.name = i_name

self.x = i_x
self.speed = i_speed

def move(self):

self.x += self.speed

p1 = Character(“Jack”, 10, 4)
p2 = Character(“Jill”, 20, -3)

p1.move() # p1.x = 14
p2.move() # p2.x = 17

The utility of writing a class is
that we can create many objects
or instances of that class.
This code for this example creates 2
Character objects.

game3.py
import random

class Character:

def __init__(self, i_name, i_x, i_speed):

self.name = i_name

self.x = i_x

self.speed = i_speed

def move(self):

self.x += self.speed

enemies = []

for i in range(10):

x = random.randrange(0, 800)

enemies.append(Character(“Goomba”, x, 5))

We can even create any number of
randomized objects.

randrange(a, b) generates a
random integer from a(included)
to b(not included).

game3.py

class Character:

def __init__(self, i_name, i_x, i_speed): …

def move(self): …

def shoot(self, target): …

p = Character(“Mario”, 10, 4)

e = Character(“Bowser”, 20, -3)

e.shoot(p) # p1.x = 14

The object e is shooting the object
p in this example.
Thus, e's address is sent to self and
p's address is sent to target.

Python Program Template
main.py

declare and initialize global variables with file scope

…

function definitions

def func1(…):

…

def func2(…):

…

class definitions

class MyClass1:

…

class MyClass2:

…

funct1()

a = MyClass1()

If our program has a small number of functions
and classes, we can define all of them in the same file
and use them right below their definitions.

A Program with Multiple Modules

A more complex program may require many functions, classes. We may wish
to organize them into different modules.

A module is a .py file that contains code, including variable, function and
class definitions.

Importing a module will execute all of its statements. The objects defined
in the imported module is now available in the current module. Let's see
how this is done.

A Program with Multiple Modules
The statement import can be used to import the entire module. All of the code
from helper.py is executed. The dot(“.”) notation is needed to access imported
code.

import helper

print(helper.a)
helper.lst.append("hello")
print(helper.lst)
print(helper.add(3, 5))

print("in helper.py!")

a = 5

lst = [1, "hi"]

def add(x, y):
return x + y

helper.pymain.py

Output:
in helper.py!
5
[1,"hi", "hello"]
8

You can see the code for this example on repl.it at:

https://repl.it/@LongNguyen18/ImportModulesPython

https://repl.it/@LongNguyen18/ImportModulesPython

A Program with Multiple Modules
You can specify an alias for the imported module.

import helper as hp

print(hp.a)
print(hp.lst)
print(hp.add(3, 5))

print("in helper.py!")

a = 5

lst = [1, "hi"]

def add(x, y):
return x + y

helper.pymain.py

Output:
in helper.py!
5
[1,"hi"]
8

A Program with Multiple Modules
You can import all objects by using *. No dot notation is needed to access
the imported code in this case.

from helper import *

print(a)
print(lst)
print(add(3, 5))

print("in helper.py!")

a = 5

lst = [1, "hi"]

def add(x, y):
return x + y

helper.pymain.py

Output:
in helper.py!
5
[1,"hi"]
8

Another Example

class definitions

class Employee:

def __init__(self, name, salary)

self.name = name

self.salary = salary

emp1 = Employee("Mike Smith", 60000.0)

emp2 = Employee("Sarah Jones", 75000.0)

print(emp1.name)

print(emp2.salary)

A list of objects
main.py

class Employee:

def __init__(self, name, salary)

self.name = name

self.salary = salary

def printEmployeesInfo(lst):

for emp in lst:

print("Name: ", emp.name)

print("Salary: ", emp.salary)

emp1 = Employee("Mike Smith", 60000.0)

emp2 = Employee("Sarah Jones", 75000.0)

employees = [emp1]

employees.append(emp2)

printEmployeesInfo(employees)

Lab 1
Write the Student class which has two instance variables: name(str) and
gpa(float).

Write the average_gpa function which accepts a list of Student objects and
returns the average gpa.

Write the main method and:
1) Create a Student object and store it in a variable. Print out name and gpa

of the Student object using the dot notation.
2) Create a list of three Student objects. Use a for loop to print out the

names.
3) Call average_gpa and make sure it works by printing out the average gpa.

Lab 1

Modify the previous lab by putting Student class and the average gpa
function in a different module(.py).

Make the necessary import statement to make your code runs correctly.

References

1) Halterman, Richard. Fundamentals of Python Programming.
Southern Adventist University.

