
How to Write a Platformer Game in Java



Some Basic Physics
Velocity of an object is the rate of change of its position. It is a vector and 
can be decomposed into a x-component and a y-component.  
A Sprite object has attributes change_x and change_y for its velocity. 
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Position and Velocity

New Position = Old Position + Velocity
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Velocity

The velocity of an object is the rate of change of its position. 

New Position = Old Position + Velocity

center_x = center_x + change_x
center_y = center_y + change_y



Acceleration
The acceleration of an object is the rate of change of its velocity. 

New Velocity = Old Velocity + Acceleration

change_x = change_x + acceleration_x
change_y = change_y + acceleration_y

For us, we will only have acceleration in the y-direction in the form of gravity. 

change_y += gravity



Putting it Together

Thus, we just have three very simple formulas:

change_y += gravity
center_y += change_y
center_x += change_x



Position and Velocity
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Since positive vertical velocity points down, 
gravity is positive. 

Gravity only affects vertical component 
of velocity.
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Resolving Platform Collisions
Instead of moving in both the x 
and y directions and then try to 
resolve collisions, it is easier to 

1) move in y direction, check for 
collision 
2) then move in the x direction 
and then check for collision 
again.

change_y += gravity
center_y += change_y
center_x += change_x



Resolving Platform Collisions
change_y += gravity
# move in vertical direction
center_y += change_y
# resolve collisions
…
# move in horizontal direction
center_x += change_x
# resolve collisions
…



Resolving Platform Collisions
move in vertical direction
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Resolving Platform Collisions
move in vertical direction
compute list of all platforms which collide with player 
if list not empty:

if player is moving up:
set top of player = bottom of a collided platform 

if player is moving down:
set bottom of player = top of a collided platform

set player's change_y = 0



Resolving Platform Collisions
move in horizontal direction



Resolving Platform Collisions
move in horizontal direction
compute list of all platforms which collide with player 
if list not empty:

if player is moving right:
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Resolving Platform Collisions
move in horizontal direction
compute list of all platforms which collide with player 
if list not empty:

if player is moving right:
set right side of player = left side of a collided platform 

if player is moving left:
set left side of player = right side of a collided platform



Player Jumps

Jumping Rule: Player can only jump when he is on a platform. 
• No multi-jumping
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Player Jumps

Jumping Rule: Player can only jump when he is on a platform. 
• No multi-jumping

CANNOT jump!



is_on_platform(sprite, platforms)

This method returns whether the sprite is on one of the platforms. 
Algorithm:
move sprite down say 5 pixels
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is_on_platform(sprite, platforms)

This method returns whether the sprite is on one of the platforms. 
Algorithm:
move sprite down say 5 pixels
compute collision list with platforms
restore position by moving up 5 pixels
if collision list not empty 

return true
otherwise return false



Jumps

if key pressed is A and sprite is on platform:
sprite.change_y = -JUMP_SPEED



Jumps

if key pressed is A and sprite is on platform:
sprite.change_y = -JUMP_SPEED


