
How to Write a Platformer Game in Java

Some Basic Physics
Velocity of an object is the rate of change of its position. It is a vector and
can be decomposed into a x-component and a y-component.
A Sprite object has attributes change_x and change_y for its velocity.

Origin (0,0)

X

Y

(center_x, center_y)

change_x

change_y

In our games, velocity is
measured in pixels per frame.

Frame 1

X

(5, 8) 3 pixels per frame

4 pixels
per frame

In our games, velocity is
measured in pixels per frame.

Origin (0,0)

Y

Frame 2

X

(8, 12)

3 pixels per frame

4 pixels
per frame

In our games,velocity is
measured in pixels per frame.

Origin (0,0)

Y

Position and Velocity

New Position = Old Position + Velocity

X

(8, 12)

3 pixels per frame

4 pixels
per frame

In our games, velocity is
measured in pixels per frame.

center_x = center_x + change_x
center_y = center_y + change_y

Origin (0,0)

Y

Velocity

The velocity of an object is the rate of change of its position.

New Position = Old Position + Velocity

center_x = center_x + change_x
center_y = center_y + change_y

Acceleration
The acceleration of an object is the rate of change of its velocity.

New Velocity = Old Velocity + Acceleration

change_x = change_x + acceleration_x
change_y = change_y + acceleration_y

For us, we will only have acceleration in the y-direction in the form of gravity.

change_y += gravity

Putting it Together

Thus, we just have three very simple formulas:

change_y += gravity
center_y += change_y
center_x += change_x

Position and Velocity

X

change_y

change_x

gravity
Since positive vertical velocity points down,
gravity is positive.

Gravity only affects vertical component
of velocity.

Origin (0,0)

Y

Frame 1

X

change_y = -12

gravity = 4

change_y += gravity

Origin (0,0)

Y

Frame 1

X

change_y = -8

gravity = 4

change_y += gravity
center_y += change_y

Origin (0,0)

Y

Frame 2

X

change_y = -8

gravity = 4

change_y += gravity

Origin (0,0)

Y

Frame 2

X

change_y = -4

gravity = 4

change_y += gravity
center_y += change_y

Origin (0,0)

Y

Frame 3

X

change_y = -4

gravity = 4

change_y += gravity

Origin (0,0)

Y

Frame 3

X

change_y = 0

gravity = 4

change_y += gravity
center_y += change_y

Origin (0,0)

Y

Frame 4

X

change_y = 0

gravity = 4

change_y += gravity

Origin (0,0)

Y

Frame 4

X

change_y = 4

gravity = 4

change_y += gravity
center_y += change_y

Origin (0,0)

Y

Frame 5

X

change_y = 4

gravity = 4

change_y += gravity

Origin (0,0)

Y

Frame 5

X

change_y = 8

gravity = 4

change_y += gravity
center_y += change_y

Origin (0,0)

Y

Frame 6

X

change_y = 8

gravity = 4

change_y += gravity

Origin (0,0)

Y

Frame 6

X

change_y = 12

gravity = 4

change_y += gravity

Origin (0,0)

Y

Resolving Platform Collisions
Instead of moving in both the x
and y directions and then try to
resolve collisions, it is easier to

1) move in y direction, check for
collision
2) then move in the x direction
and then check for collision
again.

change_y += gravity
center_y += change_y
center_x += change_x

Resolving Platform Collisions
change_y += gravity
move in vertical direction
center_y += change_y
resolve collisions
…
move in horizontal direction
center_x += change_x
resolve collisions
…

Resolving Platform Collisions
move in vertical direction

Resolving Platform Collisions
move in vertical direction
compute list of all platforms which collide with player
if list not empty:

if player is moving up:

Resolving Platform Collisions
move in vertical direction
compute list of all platforms which collide with player
if list not empty:

if player is moving up:
set top of player = bottom of a collided platform

Resolving Platform Collisions
move in vertical direction
compute list of all platforms which collide with player
if list not empty:

if player is moving up:
set top of player = bottom of a collided platform

if player is moving down:

Resolving Platform Collisions
move in vertical direction
compute list of all platforms which collide with player
if list not empty:

if player is moving up:
set top of player = bottom of a collided platform

if player is moving down:

Resolving Platform Collisions
move in vertical direction
compute list of all platforms which collide with player
if list not empty:

if player is moving up:
set top of player = bottom of a collided platform

if player is moving down:
set bottom of player = top of a collided platform

set player's change_y = 0

Resolving Platform Collisions
move in horizontal direction

Resolving Platform Collisions
move in horizontal direction
compute list of all platforms which collide with player
if list not empty:

if player is moving right:

Resolving Platform Collisions
move in horizontal direction
compute list of all platforms which collide with player
if list not empty:

if player is moving right:
set right side of player = left side of a collided platform

Resolving Platform Collisions
move in horizontal direction
compute list of all platforms which collide with player
if list not empty:

if player is moving right:
set right side of player = left side of a collided platform

if player is moving left:

Resolving Platform Collisions
move in horizontal direction
compute list of all platforms which collide with player
if list not empty:

if player is moving right:
set right side of player = left side of a collided platform

if player is moving left:

Resolving Platform Collisions
move in horizontal direction
compute list of all platforms which collide with player
if list not empty:

if player is moving right:
set right side of player = left side of a collided platform

if player is moving left:
set left side of player = right side of a collided platform

Player Jumps

Jumping Rule: Player can only jump when he is on a platform.
• No multi-jumping

Player Jumps

Jumping Rule: Player can only jump when he is on a platform.
• No multi-jumping

CAN jump!

Player Jumps

Jumping Rule: Player can only jump when he is on a platform.
• No multi-jumping

CANNOT jump!

is_on_platform(sprite, platforms)

This method returns whether the sprite is on one of the platforms.
Algorithm:
move sprite down say 5 pixels

is_on_platform(sprite, platforms)

This method returns whether the sprite is on one of the platforms.
Algorithm:
move sprite down say 5 pixels
compute collision list with platforms
restore position by moving up 5 pixels

is_on_platform(sprite, platforms)

This method returns whether the sprite is on one of the platforms.
Algorithm:
move sprite down say 5 pixels
compute collision list with platforms
restore position by moving up 5 pixels

is_on_platform(sprite, platforms)

This method returns whether the sprite is on one of the platforms.
Algorithm:
move sprite down say 5 pixels
compute collision list with platforms
restore position by moving up 5 pixels
if collision list not empty

return true
otherwise return false

Jumps

if key pressed is A and sprite is on platform:
sprite.change_y = -JUMP_SPEED

Jumps

if key pressed is A and sprite is on platform:
sprite.change_y = -JUMP_SPEED

