
Unit 2: Using Objects
Methods

Adapted from:
1) Building Java Programs: A Back to Basics Approach
by Stuart Reges and Marty Stepp
2) Runestone CSAwesome Curriculum

https://longbaonguyen.github.io

This work is licensed under the
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

https://longbaonguyen.github.io/
http://creativecommons.org/licenses/by-nc-sa/4.0/

2

Modularity
modularity: Writing code in smaller, more manageable components or
modules. Then combining the modules into a cohesive system.

– Modularity with methods. Break complex code into smaller tasks and
organize it using methods.

Methods define the behaviors or functions for objects.

An object’s behavior refers to what the object can do (or what can be done to
it). A method is simply a named group of statements.

– main is an example of a method

3

Example
Consider the following code which asks the user to enter two numbers and
print out the average.

Scanner console = new Scanner(System.in);
System.out.print("Enter a number: ");

int num1 = console.nextInt();
System.out.print("Enter a number: ");

int num2 = console.nextInt();
System.out.println("The average is " + (num1 + num2)/2.0);

What if we need to do this again?
We don't want to repeat this code by copying and pasting as shown in the next
slide.

4

Example
If we need to repeat this task, we do not want to simply copy and paste out
code:

Scanner console = new Scanner(System.in);

int num1, num2;
System.out.print("Enter a number: ");
num1 = console.nextInt();

System.out.print("Enter a number: ");
num2 = console.nextInt();
System.out.println("The average is " + (num1 + num2)/2.0);

System.out.print("Enter a number: ");

num1 = console.nextInt();
System.out.print("Enter a number: ");
num2 = console.nextInt();

System.out.println("The average is " + (num1 + num2)/2.0)

5

Method
One way to organize code and to make it more readable and reusable is to
factor out useful pieces into reusable methods.

A method is a named group of programming instructions that accomplish a
specific task. If we want to perform the task, we simply "call" the method by
its name. A method may be called as many times as we wish to redo the task.

The "30 seconds" button on the microwave is an example of a method. If we
press it(call it by its name), it will run the microwave 30 seconds. Later, if we
want to heat something else, we can press it again to run the microwave
another 30 seconds.

In other programming languages, methods are also called procedures or
functions.

6

Example
If we need to repeat this task, we do not want to simply copy and paste out
code:

Scanner console = new Scanner(System.in);

int num1, num2;
System.out.print("Enter a number: ");
num1 = console.nextInt();

System.out.print("Enter a number: ");
num2 = console.nextInt();
System.out.println("The average is " + (num1 + num2)/2.0);

System.out.print("Enter a number: ");

num1 = console.nextInt();
System.out.print("Enter a number: ");
num2 = console.nextInt();

System.out.println("The average is " + (num1 + num2)/2.0)

Let's factor out this
piece of code,
convert it into a
method by giving it
a name!

Then we can call it
repeatedly if we
wish to run the
code.

7

Method
A method is a group of code that has a name and can be called using parentheses.
public class Main{

public static void main(String[] args){

// calling it the first time

average();
// calling it again to repeat the task

average();

}

public static void average(){

Scanner console = new Scanner(System.in);

int num1, num2;

System.out.print("Enter a number: ");

num1 = console.nextInt();

System.out.print("Enter a number: ");

num2 = console.nextInt();

System.out.println("The average is " + (num1 + num2)/2.0);

}}

Enter a number: 4
Enter a number: 6
The average is 5.0

Enter a number: 10
Enter a number: 11
The average is 10.5

8

static vs non-static
Variables and methods can be classified as static or non-static(instance). It's
easiest to understand this distinction through an example.

String name1 = "John";
String name2 = "Sarah";

System.out.println(name1.length()); // 4
System.out.println(name2.length()); // 5

The length method above is an instance method(or a non-static method). It
belongs to individual objects(one for each String).

int i = 10;
String s = String.valueOf(i); // s = "10"

The valueOf method above is static method. It belongs to the class String rather than
any particular object.

9

static vs non-static
Variables and methods can be classified as static or non-static(instance).

static: Part of a class, rather than part of an object. Not copied into each
object; shared by all objects of that class. Static methods are called using the
dot operator along with the class name unless they are defined in the
enclosing class.

double x = Math.pow(2, 3); // pow is a static method

// its code is in the Math class
// Note the dot notation.

10

static vs non-static
Variables and methods can be classified as static or nonstatic(instance).

Non-static or instance: Part of an object, rather than shared by the class.
Non-static methods are called using the dot operator along with the object
variable name.

Scanner console = new Scanner(System.in);
// the code for accepting user input is found in the
// Scanner class

// the nextInt() method is non-static or instance, it is

// called through an object(console) rather than the class.
int num = console.nextInt();

11

// static methods, called through class name(Math)
double x = Math.pow(2, 3);

dount y = Math.sqrt(9);

// non static or instance methods, call through an object
Scanner console = new Scanner(System.in);
int num = console.nextInt();

12

Static Method Inside Driver Class

The driver class is the class with the main method. Note that the main method is the
begin point of a run of any program. The driver class can contain other static methods.
You can call a static method from another method in the same enclosing class
directly without referencing the name or object of the class. No dot notation
is needed.

public class MyClass{

public static void main(String[] args){

method2();

method1();

}

public static void method1(){

System.out.println(“running method1”);

}
public static void method2(){

System.out.println(“running method2”);

}

}

MyClass.java

Output:
running method2
running method1

13

Static Method Inside Driver Class

The order of the methods in the driver class does not matter and does not
affect the run or output of the program. The program below has the exact same
output as the program from the previous slide. The main method is always the
starting point of the run of any program.
public class MyClass{

public static void method1(){
System.out.println(“running method1”);

}

public static void main(String[] args){

method2();

method1();

}

public static void method2(){

System.out.println(“running method2”);

}

}

MyClass.java

Output:
running method2
running method1

14

When a method is called, the program's execution...
– "jumps" into that method, executing its statements, then
– "jumps" back to the point where the method was called.

What is the output?
public class MethodsExample {

public static void main(String[] args) {

message1();

message2();

}

...

}

public static void message1() {
System.out.println("This is message1.");

}

public static void message2() {
System.out.println("This is message2.");
message1();
System.out.println("Done with message2.");

}

public static void message1() {
System.out.println("This is message1.");

}

Control flow

Output:
This is message1.
This is message2.
This is message1.
Done with message2.

15

Method Signature
A method signature for a method consists of the method name and the
ordered, possibly empty, list of parameter types.
public void name(parameters){

statements;
}

Examples:
public static void method1(){

…

}

public static void method2(int x, double y){

…

}

The parameters in the method header are formal parameters.

no parametersvoid: no value is
returned when
method ends.

16

Static Example
When calling a method with parameters, values provided in the parameter list
need to correspond to the order and type in the method signature.

public class MyProgram{
public static void main(String[] args){

mystery1(3, 4); // error, incompatible types!
mystery1(); // missing actual parameters
mystery1(3); // missing actual parameters
mystery1(3, true); // correct
mystery2(3.2, 3.0); // error, incompatible types!
double a = 2.5;
int b = 5;
mystery2(double a, int b); // error, no type in actual parameters
mystery2(a, b); // correct

}
public static void mystery1(int x, boolean y){
…
}
public static void mystery2(double x, int z){
…
}

}

17

Method Returns
Methods in Java can have return types. Such non-void methods return
values back that can be used by the program. A method can use the keyword
“return” to return a value.

public type methodName(type var1,…, type var2){
…

}

Examples:
public static int method1(){

…

}

public static double method2(int x){

…

}

return types

Note: Method
parameters are
its inputs and
method returns
are its outputs.

18

Return
• return: To send out a value as the result of a method.

– The opposite of a parameter:
• Parameters send information in from the caller to the method.
• Return values send information out from a method to its caller.

– A call to the method can be used as part of an expression.

main

Math.abs(-42)-42

Math.round(2.71)

2.71

42

3

19

Returns
Returned values can be stored in a variable, used in other math
expressions or printed on the console.

public class Main{
public static void main(String[] args) {
System.out.println("the sum of 3 and 5 is" + sum(3, 5));
int s = sum(10, 20);
System.out.println(s);

}
public static int sum(int a, int b){

return a + b;
}

}

returned value is
concatenated with a
string

returned value is
stored in a variable.

20

Return

Non-void methods return a value that is the same type as the return type in
the signature.

To use the return value when calling a non-void method, it must be stored in
a variable or used as part of an expression.

Procedural abstraction allows a programmer to use a method by knowing
what the method does even if they do not know how the method was written.

For example, the Math library, part of the java.lang package contains many
useful mathematical methods. We may not know how these methods were
implemented but we can still use them.

21

Common error: Not storing
Many students forget to store the result of a method call.

public static void main(String[] args) {
Math.abs(-4); // error! Returned value not stored nor used

// (not a compiler/syntax error)
// corrected
int result = Math.abs(-4);
System.out.println(result); // 4

System.out.println(“the square root of 4 is “ + Math.sqrt(4));
// the square root of 4 is 2.0
System.out.println(sum(3, 5)); // 8
int result2 = sum(5, 7); // 12

}
public static int sum(int a, int b){
return a + b;

}

returned value is
concatenated with a
string

22

NullPointerException
Using a null reference to call a method or access an instance variable causes
a NullPointerException to be thrown.

public static void main(String[] args) {

Sprite a = null; //currently the variable a references no object
a.display(); // NullPointerException, can’t call method on

// a reference to nothing!
System.out.println(a.center_x); // NullPointerException

}

23

Void Methods
Void methods do not have return values. Once the execution of the method
completes, the flow of control returns to the point immediately following
where the method was called.

public void methodName(type var1,…, type var2){
…

}

Examples:
public static void method1(){

…

}

public static void method2(int x){

…

}

void

24

Void Methods
Void methods do not have return values and are therefore not called as part
of an expression.

public class MyClass{

public static void main(String[] args){

int a = 3 + printX(5); //error! Does not return!

int b = 5 * twiceX(3); // correct, b = 30

printX(5); // correct

// Output: The input x is 5

}

public static void printX(int x){

System.out.println(“The input x is” + x);
}

public static int twiceX(int x){

return 2 * x;

}

}

25

Overloaded Methods
Methods are said to be overloaded when there are multiple methods with
the same name but a different signature.
public class MyClass{

public static void main(String[] args){
double a = add(1, 2) + add(1.8, 5.2) + add(1, 2, 3);

System.out.println(a); // 16.0
}
public static int add(int x, int y){

return x + y;
}

public static double add(double x, double y){
return x + y;

}
public static int add(int x, int y, int z){

return x + y + z;
}

}

Three methods
named “add”.

26

Value Semantics
Parameters are passed using call by value or value semantics. Call by
value initializes the formal parameters with copies of the actual parameters.
When primitive variables (int, double,boolean) and String(the only object
class that does this) are passed as parameters, their values are copied.

– Modifying the parameter will not affect the variable passed in.

public class MyClass{
public static void main(String[] args){

int x = 23;
strange(x);
System.out.println("2. x = " + x);

}

public static void strange(int x){
x = x + 1;
System.out.println("1. x = " + x);

}
}

Note: The value of x in main did not change.

Output:
1. x = 24
2. x = 23

The x variable in
main is different
than the x
variable in
strange.

27

Value semantics
Value semantics: methods cannot change the values of primitive
types(int, boolean, float) and String.

public class MyClass{

public static void main(String[] args){
int x = 5;

doubleMyNumber(x);

System.out.println(“My number is” + x); //My number is 5

}

public static void doubleMyNumber(int x){
x = x * 2;

}

}

Note: The value of x in main did not change.

28

Find all errors.
public class MyClass{

public static void main(String[] args){

printX();

add();

add(3, 5);
System.out.println(printX(5));
System.out.println(“3 + 5 = “ + add(3, 5));

int y = 3 + add(4, 6.0);

}

public static void printX(int x){

System.out.println(“The input x is” + x);

}

public static int add(int x, int y){

return x + y;
}

}

29

Answers
public class MyClass{

public static void main(String[] args){

printX(); // missing actual parameter.
add(); // missing actual parameters.

add(3, 5); // returned value not stored
// but not a syntax error.

System.out.println(printX(5)); // error!
//no returned value!

System.out.println(“3 + 5 = “ + add(3, 5));//correct!
int y = 3 + add(4, 6.0); // incompatible types!

}
public static void printX(int x){

System.out.println(“The input x is” + x);
}

public static int add(int x, int y){
return x + y;

}
}

30

Lab
Create a new repl on repl.it.

Write a driver class with the following five static methods.
// given two integers x and y, returns their average.
public static double average(int x, int y)

{…}

// given two points (x1, y1) and (x2,y2), returns
// the slope of the line through them. You may assume
// x1 is not equal to x2.
public static double slope(int x1,int y1,int x2,int y2)

{…}

31

Lab

32

Lab
Write your program so that it has EXACTLY THE FOLLOWING
OUTPUT.

Program Output: (underlined values are user-entered inputs)
Enter x1: 2
Enter y1: -1
Enter x2: 3
Enter y2: 5

The average of 2 and -1 is 0.5.
The slope of the line between (2,-1) and (3,5) is 6.0
The distance between (2,-1) and (3,5) is 6.082762530298219

33

References

For more tutorials/lecture notes in Java, Python, game
programming, artificial intelligence with neural networks:

https://longbaonguyen.github.io

1) Building Java Programs: A Back to Basics Approach by Stuart Reges and
Marty Stepp

2) Runestone CSAwesome Curriculum:
https://runestone.academy/runestone/books/published/csawesome/index.html

https://longbaonguyen.github.io/
https://runestone.academy/runestone/books/published/csawesome/index.html

