
Unit 2: Using Objects
Objects: Instances of Classes

Adapted from:
1) Building Java Programs: A Back to Basics Approach
by Stuart Reges and Marty Stepp
2) Runestone CSAwesome Curriculum

https://longbaonguyen.github.io

This work is licensed under the
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

https://longbaonguyen.github.io/
http://creativecommons.org/licenses/by-nc-sa/4.0/

2

Class
In this unit, you will learn to use objects (variables of a class
or reference type) that have been designed by other
programmers.

Later on, in Unit 5, you will learn to create your own classes and
objects.

A class in programming defines a new abstract data type. A
class is the formal implementation, or blueprint, of the attributes
and behaviors of an object.

When you create objects or instances of a class in coding,
you create new variables or objects of that class data type.

3

Objects
class: A program entity that represents a template for a new
type of objects.

object or instance: An entity that combines attributes(data)
and behavior(methods).

– object-oriented programming (OOP): Programs that
perform their behavior as interactions between objects. Java is
object-oriented.

The Car class is a template for creating Car objects.

4

Classes and objects
Example:
The Ipod class provides the template or blueprint for the
attributes(data) and behavior(methods) of an ipod object.

Its attributes or data can include the current song, current
volume and battery life.

Its behavior or methods can include change song, change
volume, turn on/off, etc…

Two different Ipod objects can have different attributes/data.
However, their template share the same implementation/code.

5

Blueprint analogy
iPod blueprint

attributes:
current song
volume
battery life

behavior:
power on/off
change station/song
change volume
choose random song

iPod #1
attributes:
song = ”Uptown Funk"
volume = 17
battery life = 2.5 hrs

behavior:
power on/off
change station/song
change volume
choose random song

iPod #2
attributes:
song = ”You make me

wanna"
volume = 9
battery life = 3.41 hrs

behavior:
power on/off
change station/song
change volume
choose random song

iPod #3
attributes:
song = ”Trumpets"
volume = 24
battery life = 1.8 hrs

behavior:
power on/off
change station/song
change volume
choose random song

creates

6

More Examples
Suppose you are writing an arcade game. What are some useful
classes and their corresponding objects?

Example:
The Character Class represents characters in the game.
Attributes/Data: String name, int numberOfLives, boolean
isAlien.
Behavior/Methods: shoot(), runLeft(), runRight(), jump().

Objects:
Character player1, player2; //declaring objects of type Character
Character enemy1, enemy2;

7

More Examples
Your game might have more than one classes.

Classes: Character, Boss, MysteryBox, Obstacle.

Objects:

Boss level1, level2;
MysteryBox yellow; // give player 3 extra lives
MysteryBox red; // give player 100 coins
Obstacle wall; //immovable
Obstacle poison; // kills player

8

Sprite
Soon, we will use the Processing IDE(www.processing.org) to
help us write arcade games.

In games, a sprite is an object that represents a character in a
game.

It usually consists of an image(or set of images) of a character
moving and interacting with other sprites in the game.

Let’s look at an example of a Sprite class that we will expand
later into a full arcade game.

http://www.processing.org/

9

Sprite
Sprite’s attributes can include many properties: the image(.png or .jpg) of the
sprite, the width and height of the image, and position on the screen given by
center_x and center_y instance variables.

To keep things simple, for now, we focus on just two attributes: center_x and
center_y.

(center_x, center_y)

origin (0,0)
center_x

center_y

10

Class Diagram
The image below represents a class diagram of the Sprite
class. The class diagram allows us to preview the contents of the
class.

Sprite
public Sprite(double x, double y)
double center_x
double center_y
…

public void display()
public void update()
…

constructor:
method that
inititalizes the
attributes.

attributes:data or
properties of a
class(variables)

methods:
behaviors of
the class.

11

Constructor
The constructor of a class is a method that allows us to initialize the
attributes(variables) of an object when it is first created.

Constructors always have the same
name as the class and are used
with the keyword new.

An object variable is created using the
keyword new followed by a call to a
constructor.

Sprite
public Sprite(double x, double y)
double center_x
double center_y
…

public void display()
public void update()
…

signature: name
of constructor and
its parameter list.

12

Constructor
Consider the line of code used to create a Sprite object
called player:
Sprite player = new Sprite(30.0,50.0);

The actual parameters (30.0, 50.0) is passed to
the formal parameters (double x, double y)
of the constructors. The actual parameters passed
to a constructor must be compatible with the
types identified in the formal parameter list.

In code not shown here, the variables x and y
are then used to initialize the attributes
center_x and center_y.

Sprite
public Sprite(double x, double y)

double center_x
double center_y
…

…

arguments or
parameters:
data that
methods need
to do its job.

13

Multiple Objects
We can create multiple objects using the constructor.

public class ConstructorExample

{

public static void main(String[] args){

Sprite player1 = new Sprite(30, 50);
Sprite player2 = new Sprite(10, 40);

}

}

Note that in this example, player1 and player2 are two different objects or
instances of the same class, each with its own copy of instance variables and
methods.

We can access the attributes of an object by using the dot notation as
shown in the next example.

14

Accessing attributes
We can access the attributes of an object by using the dot notation.

public class ConstructorExample{

public static void main(String[] args){

Sprite player1 = new Sprite(30, 50);

Sprite player2 = new Sprite(10, 40);
System.out.println(player1.center_x) // 30.0

System.out.println(player1.center_y) // 50.0

System.out.println(player2.center_x) // 10.0

System.out.println(player2.center_y) // 40.0

}

}

15

modifying attributes
We can modify the attributes of an object by using the dot notation.

public class ConstructorExample{

public static void main(String[] args){

Sprite player1 = new Sprite(30, 50);

Sprite player2 = new Sprite(10, 40);
System.out.println(player1.center_x) // 30.0

System.out.println(player1.center_y) // 50.0

System.out.println(player2.center_x) // 10.0

System.out.println(player2.center_y) // 40.0

player1.center_x = 100;
System.out.println(player1.center_x) // 100.0

}

}

16

Overloaded constructors
Constructors are said to be overloaded when there are multiple constructors
with the same name but a different signature.

Note on the right, the Sprite class has two
constructors: one that has no parameter and one
that has parameters.

Usually, the constructor that has no parameter
(sometimes called the default constructor)
initializes the object to some default values, for
example, zeroes.

Sprite
public Sprite()
public Sprite(double x, double y)

double center_x
double center_y
…

…

17

overloaded constructors
We can call different constructors to initialize our objects. Assume the
default constructor initializes center_x and center_y to be at the
origin.

public class ConstructorExample{

public static void main(String[] args){

Sprite player1 = new Sprite();
Sprite player2 = new Sprite(10, 40);
System.out.println(player1.center_x) // 0.0

System.out.println(player1.center_y) // 0.0

System.out.println(player2.center_x) // 10.0

System.out.println(player2.center_y) // 40.0

}

}

18

Primitive vs. Reference Type
The memory associated with a variable of a primitive type(int, double,
boolean) holds an actual primitive value.

int x = 3; // x is a variable of a primitive type
// the memory associated with x actually holds the value 3

int y = x; // y copies the value of x
// y is a different variable in memory
// which also hold the value 3

Here we have two different integers in memory
both of which has the value 3.

x 3

y 3

19

Primitive vs. Reference Type
While the memory associated with a variable of a reference type holds an
object reference value. This value is the memory address of the
referenced object.
Sprite x = new Sprite(100, 200);
// x is a variable of a reference type
// the value of x is actually an address in memory of this
// Sprite object not the actual object itself.
Sprite y = x; // copies the address of x

Note that this is similar to the previous slide example. But in this case, both x
and y stores the same address in memory therefore both refer to the
same object.

Sprite
(100,200)

x
y

20

More Examples

// x, y and isPrime are variables of primitive type(Unit 1).
int x = 3;
double y = 2.5;
boolean isPrime = false;

// player1, player2 are variables of a reference type

Sprite player1 = new Sprite(100, 200);
Sprite player2 = new Sprite();

21

Null
The keyword null is a special value used to indicate that a
reference is not associated with any object. Accessing an
instance variable of a null reference will result in a
NullPointerException.

// player1 points to the address or location in memory for the
// Sprite object
Sprite player1 = new Sprite(100, 200);

Sprite player2 = null; // player2 is initialized to null since it is not
// yet associated with any object.

System.out.println(player2.center_x) // NullPointerException
Sprite player3;

System.out.println(player3.center_x) // error! Player3 is not
// initialized(not a NullPointerException)

22

Example Implementation
Although we will write the Sprite class later in Unit 5. It is instructive to see
the implementation of this very simple class to understand the structure of a
class.
Note that there are two .java files. The main method is in
Main.java(sometimes call the driver class) and the Sprite object class is in
Sprite.java.

public class Main{
public static void main(String[] args){

Sprite player1 = new Sprite();
Sprite player2 = new Sprite(10, 40);

}
}

public class Sprite{
double center_x;
double center_y;
public Sprite(){

center_x = 0;
center_y = 0;

}
public Sprite(double x, double y){

center_x = x;
center_y = y;

}
}

Main.java Sprite.java

overloaded
constructors

declaring the
instance
variables

initializing
the instance
variables

creating the
objects by
calling one of
the constructors

23

References

For more tutorials/lecture notes in Java, Python, game
programming, artificial intelligence with neural networks:

https://longbaonguyen.github.io

1) Building Java Programs: A Back to Basics Approach by Stuart Reges and
Marty Stepp

2) Runestone CSAwesome Curriculum:
https://runestone.academy/runestone/books/published/csawesome/index.html

https://longbaonguyen.github.io/
https://runestone.academy/runestone/books/published/csawesome/index.html

