
Unit 9: Inheritance
Polymorphism

Adapted from:
1) Building Java Programs: A Back to Basics Approach
by Stuart Reges and Marty Stepp
2) Runestone CSAwesome Curriculum

https://longbaonguyen.github.io

https://longbaonguyen.github.io/

2

Polymorphism

polymorphism: Ability for an object or method to take on many
forms("poly" = many, "morphism" = forms)

– method overriding(run-time polymorphism)
– method overloading(compile-time polymorphism)

3

Employee and Lawyer
Suppose we have the following classes. We'll use these classes for the next
few examples in the following slides.
public class Employee{

public double getSalary(){return 50000.0}

public String getVacationForms(){return "pink";}

}

public class Lawyer extends Employee{

public double getSalary(){return 60000.0}

public String getVacationForms(){return "yellow";}

public void sue(){System.out.println("I will see you in court!");}

}

public class Secretary extends Employee{

public void takeDictation(String str){…}

}

public class LegalSecretary extends Secretary{

public void filLegalBriefs(){…}

}

4

Coding with polymorphism
A variable of type T can hold an object of any subclass of T.

Employee ed = new Lawyer();

– You can call any methods from the Employee class on ed.

When a method is called on ed, it behaves as a Lawyer even
though ed is an Employee reference.

System.out.println(ed.getSalary());// Lawyer's salary 60000.0
System.out.println(ed.getVacationForm()); // Lawyer's(yellow)

Method overriding is also known as run-time polymorphism or dynamic
binding. Java selects the correct method at run-time.

Why do we want to put a Lawyer object inside of an Employee reference?

5

Polymorphism and parameters
polymorphism: Ability for the same code to be used with different types of
objects and behave differently with each. The printInfo method below will
behave different depending on the type of object in the parameter.

public class EmployeeMain {
public static void main(String[] args) {

Employee steve = new Employee();
Lawyer sarah = new Lawyer();
printInfo(steve);
printInfo(sarah);

}
public static void printInfo(Employee empl) {

System.out.println("salary: " + empl.getSalary());
System.out.println("v.form: " + empl.getVacationForm());
System.out.println();

}
}

OUTPUT:
salary: 50000.0
v.form: pink
salary: 60000.0
v.form: yellow

If not for polymorphism,
we need to write a different
printInfo, one for each subclass(Employee,
Secretary, Lawyer)!
This code will remain the same regardless
of how many subclasses of Employee we add later
in our code.

Same code,
different
behaviors

6

Polymorphism and arrays
Arrays/Arraylists of superclass types can store any subtype as
elements.

public class EmployeeMain2 {
public static void main(String[] args) {

Employee[] e = { new Employee(), new Lawyer(),
new Secretary(), new LegalSecretary() };

for (int i = 0; i < e.length; i++) {
System.out.println("salary: " + e[i].getSalary());
System.out.println("forms: " + e[i].getVacationForms());
System.out.println();

}
}

}

Output:
salary: 50000.0
forms: pink

salary: 60000.0
forms: yellow

salary: 50000.0
forms: pink
salary: 50000.0
forms: pink

Polymorphism allows us to store ALL employees
regardless of their job positions in the same array and
our code can behave correctly depending on the object type.

Otherwise, we need to create a different array for each
position(i.e, one for Employees, one for Lawyers, etc…)

7

Casting references
• A variable can only call that type's methods, not a subtype's.

Employee ed = new Lawyer();
int hours = ed.getSalary(); // ok; it's in Employee
ed.sue(); // compiler error

– The compiler's reasoning is, variable ed could store any kind of
employee, and not all kinds know how to sue .

• To use Lawyer methods on ed, we can type-cast it.
Lawyer theRealEd = (Lawyer) ed;
theRealEd.sue(); // ok

((Lawyer) ed).sue();// shorter version, two sets of()

8

More about casting
The code crashes if you cast an object too far down the tree.

Employee eric = new Secretary();
((Secretary) eric).takeDictation("hi"); // ok
((LegalSecretary) eric).fileLegalBriefs(); // Class cast

//exception

// (Secretary object doesn't know how to file briefs)

You can cast only up and down the tree, not sideways.
Lawyer linda = new Lawyer();
((Secretary) linda).takeDictation("hi"); // error

Casting doesn't actually change the object's behavior.
It just gets the code to compile/run.

((Employee) linda).getVacationForm()
// yellow (Lawyer's)

9

Review Example
Employee one = new Secretary(); //upcasts, always ok

Secretary two = one; //error, not every employee is a secretary

// even though, in this case, one points to a secretary

one.getSalary();

//calls Secretary’s version

one.takeDictation("hi");

//error, even though one holds a Secretary object, one is an

// Employee reference and can only call Employee’s methods.

//here’s how to fix the above error.

((Secretary) one).takeDictation("hi");//cast then call

//can’t cast too far down the tree

((LegalSecretary) one).fileLegalBriefs(); //error

10

Review Example 2
LegalSecretary two = new LegalSecretary();

((Secretary) two).getSalary();

//upcast doesn’t change behavior.

//still LegalSecretary’s version

((Employee) two).getSalary();

//still LegalSecretary’s version

//can’t cast sideways

((Lawyer) two).sue(); //error

11

Overloading
A class can have many forms of the same method. Methods are said to be
overloaded when there are multiple methods with the same name but a
different signature in the same class.

The methods are distinguished by:

1. Number of parameters
2. Type of the parameters
3. Order of the parameters

Method overloading is also known as compile-time polymorphism or static
binding. Java selects the correct method at compile-time.

12

Number of Parameters
Methods with the same name can be distinguished by the number of
parameters. For example, below, one parameter vs two parameters.

public class Overload{

public void method1(int c)
{…}

public void method1(int c, double d)
{…}

}

13

Type of Parameters
Methods with the same name can be distinguished by the type of the
parameters. For example, below, int vs double.

public class Overload{

public void method1(int c)
{…}

public void method1(double c)
{…}

}

14

Order of Parameters
Methods with the same name can be distinguished by the order of the
parameters. For example, below, (int then double) vs (double then int).

public class Overload{

public void method1(int c, double d)
{…}

public void method1(double d, int c)
{…}

}

15

Invalid Overloading
Case 1:
public void method1(int c, double d)

{…}

public void method1(int e, double f)

{…}

Compile error. Same number, data types and sequence. Methods cannot be
overloaded with just different variable names.

One reason is because a call like this would be ambiguous:
method1(3, 4.1);

// which method1? The compiler can’t
// distinguished the two versions and will throw an error

16

Invalid Overloading
Case 2:
public void method1(int c, double d)

{…}

public boolean method1(int e, double f)

{…}

Compile error. Same number, data types and sequence. Even though the
return type is different, this is not valid.

One reason is because a call like this would be ambiguous:
method1(3, 4.1); // which method1?, both work.

17

Ambiguous Call
The following correctly implements method overloading. However, it is
possible that a method call is ambiguous.

public static void method1(int a, double b)

{…}

public static void method1(double a, int b)

{…}
public static void main(String[] args)

{

method1(3, 4.0); // ok, calls the first one above

method1(3.3, 4); // ok, calls the second one above

method1(3, 4); //error, ambiguous call, which one?
// Compiler error

}

18

Compile-time vs Runtime
An error is a compile-time error if it happens when the program
compiles.

– All method overloading errors are compile-time errors.
– missing semicolons, curly braces.

An error is a runtime error if it happens when the program runs.
– Casting too far down, sideways are run-time errors.
– divide by zero, out of bounds index errors

A runtime error compiles without errors.

19

Compile-time vs Runtime
Employee Sean = new Secretary();

Sean.takeDictation(“hi”);

//compile-time error, no such method in Employee

Sean.fileLegalBriefs();

// compile-time error, no such method in Employee

Sean.getSalary();

//ok

20

Compile-time vs Runtime
((LegalSecretary) Sean).sue();

//compile-time error,sue() isn’t in LegalSecretary

((LegalSecretary) Sean).fileLegalBriefs();

//runtime error, cast too far down the tree

//the program compiles without errors.

((Lawyer) Sean).sue();

//runtime error, horizontal casting not allowed;

//the program compiles without errors.

21

The Cosmic SuperClass Object
All types of objects have a superclass named Object.

– Every class implicitly extends Object

The Object class defines several methods:

– public String toString()
Returns a text representation of the object,
often so that it can be printed. We have seen
this in Unit 5.

– public boolean equals(Object other)
Compare the object to any other for equality.
Returns true if the objects have equal state.

22

Object variables
You can store any object in a variable of type Object.

Object o1 = new Point(5, -3);
Object o2 = "hello there";
Object o3 = new Scanner(System.in);

An Object variable only knows how to do general things.
String s = o1.toString(); // ok(memory address)
int len = o2.length(); // compile-time error
String line = o3.nextLine(); // compile-time error

23

Recall: comparing objects
The == operator does not work well with objects.
• == compares references to objects, not their state. It only

produces true when you compare an object to itself.

Point p1 = new Point(5, 3);
Point p2 = new Point(5, 3);
if (p1 == p2) { // false

System.out.println("equal");
}

...

x 5 y 3p1

p2
...

x 5 y 3

24

The equals method
The equals method compares the state of objects.

if (str1.equals(str2)) {
System.out.println("the strings are equal");

}

But if you write a class, its equals method behaves like ==

if (p1.equals(p2)) { // false :-(
System.out.println("equal");

}

– This is the behavior we inherit from class Object.
– Java doesn't understand how to compare Points by default.

25

equals method

We can change this behavior by writing an equals method that
overrides the one inherited from Object.

– Note the method header including the parameter Object o
below.

– The method should compare the state of the two objects and
return true if they have the same x/y position.

public boolean equals(Object o) {
Point other = (Point) o;
return (x == other.x && y == other.y)

}

26

An Implementation of Point

Here's the Point class with both toString and equals overriden.
public class Point {

private int x;
private int y;
public Point(int newX, int newY){

x = newX;
y = newY;

}
public boolean equals(Object o) {

Point other = (Point) o;
return (x == other.x && y == other.y);

}
public String toString(){

return "(" + x + ", " + y + ")";
}

}

27

Main

public class Main {
public static void main(String[] args){

Point x = new Point(2, -5);
Point y = new Point(2, -5);

Point z = new Point(3, 8);

Point w = z;

System.out.println(x == y); // false
System.out.println(x.equals(y)); // true
System.out.println(z == w); // true
System.out.println(x.equals(w)); // false
System.out.println(x); //(2, -5)
// call toString() implicitly
System.out.println(z.toString()); //(3, 8)

}

}

x and y are two different objects
but mathematically equivalent.
Overriding equals allows us to easily
recognize that certain objects are
equivalent.

28

Lab 1

Modify the previous lab(Inheritance Lecture Lab 1) which contains
Student and GradStudent classes.

The Student class now has an additional private variable double gpa.
Modify the constructor accordingly.

Add getGpa() and setGpa() methods.

Add a isGraduating() method which returns whether the Student is
graduating. A student graduates if his gpa is at least a 2.0.

29

Lab 1

Modify the GradStudent class. Override the isGraduating method from
Student. A graduate student graduates if his gpa is at least a 3.0.

Write the driver class. Create an array containing at least one
Student object and one GradStudent object. Use a loop to
print out welcome messages and whether they graduate.
Notice polymorphism at work.

