
Unit 8: 2D Arrays

Adapted from:
1) Building Java Programs: A Back to Basics Approach
by Stuart Reges and Marty Stepp
2) Runestone CSAwesome Curriculum

https://longbaonguyen.github.io

https://longbaonguyen.github.io/

2

2D Arrays

We have only worked with one-dimensional arrays so far, which have a
single row of elements.

But in the real world, data is often represented in a two-dimensional
table with rows and columns.

Programming languages can also represent arrays this way with
multiple dimensions.

3

2D Arrays
A two-dimensional (2D) array has rows and columns.

A row has horizontal elements. A column has vertical elements. In
the picture below there are 3 rows of lockers and 6 columns.

4

2D Arrays
Two dimensional arrays are especially useful when the data is naturally
organized in rows and columns like in a spreadsheet, bingo, battleship,
theater seats, classroom seats, connect-four game, or a picture.

One of our labs, we will implement the Connect Four game.

5

2D Arrays
Many programming languages actually store two-dimensional array data in a
one-dimensional array. The typical way to do this is to store all the data for
the first row followed by all the data for the second row and so on. This is
called row-major order.
Some languages store all the data for the first column followed by all the data
for the second column and so on. This called column-major order.

6

Declare and Initialize
To declare and initialize a 2D array,

type[][] name = new type[row][col];

where row, col is the number of rows/columns. When arrays are created their
contents are automatically initialized to 0 for numeric types, null for object
references, and false for type boolean.

int[][] matrix = new int[3][4]; //3 rows, 4 columns
//all initialized to 0.

0 0 0 0
0 0 0 0
0 0 0 0

7

2D Array
To explicitly put a value in an array, you can use assignment
statements specifying the row and column of the entry.

int[][] matrix = new int[3][4]; //3 rows, 4 columns
//all initialized to 0.

matrix[0][0] = 2;
matrix[1][2] = -6;

matrix[2][1] = 7;

2 0 0 0
0 0 -6 0
0 7 0 0

8

Initializer List
You can also initialize (set) the values for the array when you
create it. In this case you don’t need to specify the size of the
array, it will be determined from the values you give. This is called
using initializer list.

int[] array = {1, 4, 3}; // 1D array initializer list.
// 2D array initializer list.
int[][] mat = {{3, 4, 5}, {6, 7, 8}};

// 2 rows, 3 columns

3 4 5
6 7 8

9

Declare and Initialize
Declaring and initializing 2D arrays.
int[][] table; //2D array of ints, null reference

double[][] matrix=new double[4][5];

// 4 rows, 5 columns
// initialized all to 0.0

String[][] strs=new String[2][5];

// strs reference 2x5 array of String objects. Each element is null.

// Using initializer list.
String[][] seatingInfo = {{"Jamal", "Maria"},

{"Jake", "Suzy"}, {"Emma", "Luke"}};

10

Array of Arrays
A 2D array is implemented as an array of row arrays. Each row is a one-
dimensional array of elements. Suppose that mat is the 2D array:

Then mat is an array of three arrays:
mat[0] is the one-dimensional array {3,-4,1,2}.
mat[1] is the one-dimensional array {6,0,8,1}.
mat[2] is the one-dimensional array {-2,9,1,7}.
mat.length is the number of rows.

3 -4 1 2
6 0 8 1
-2 9 1 7

11

Array of Arrays

1) mat.length is the number of rows. In this case, it equals 3 because
there are three row-arrays in mat.

2) For each k, where 0<=k<mat.length, mat[k].length is the number of
elements in that row, namely the number of columns. In this case,
mat[k].length=4 for all k.

3) Java allows “jagged arrays” where each row array may have different
lengths. However, on the AP exam, assume all arrays are
rectangular.

3 -4 1 2
6 0 8 1
-2 9 1 7

12

Example

int[][] mat={{3,4,5},{1,2},{0,1,-3,5}};

mat[0] = {3,4,5}

mat[1] = {1,2}

mat[2] = {0,1,-3,5}

mat.length = 3
mat[0].length = 3

mat[1].length = 2
mat[2].length = 4

13

Common Algorithms
You should know how to implement the following algorithms:

Given a 2D array:

1) Traverse the array by row major order
2) Traverse the array by column major order
3) Traverse one row of the 2D array
4) Traverse one column of the 2D array
5) Traverse row-by-row
6) Find the largest element.
7) Find the sum and average.
8) Sequential/Linear search a 2D array by sequential/search each row

of 2D array.

14

Row Major Order
Suppose that mat is a 2D array initialized with integers. Use
nested for loop to print out the elements of the array. Traverse by
row-major order.
int[][] mat = {{3,4,5},{1,2},{0,1,-3,5}};

for(int row = 0;row < mat.length;row++){
for(int col = 0;col < mat[row].length;col++)

System.out.print(mat[row][col]+ " ");

System.out.println();

}

Output:
3 4 5
1 2
0 1 -3 5

15

For Each Traversal
Traverse an array by using a for each loop. For each loop, in general,
are much easier to work with. If you are not modifying your 2D array, it
is highly recommended that you use for each to avoid index errors.

int[][] mat = {{3,4,5},{1,2},{0,1,-3,5}};

for(int[] row: mat){
for(int element: row)

System.out.println(element + " ");

System.out.println();

}

Output:
3 4 5
1 2
0 1 -3 5

16

Column Major Order
Suppose that mat is a 2D array initialized with integers. Use
nested for loop to print out the elements of the array. Traverse by
column-major order. Assume that the array is rectangular.

int[][] mat = {{3,4,5},{1,2,3}};

for(int col = 0;col < mat[0].length;col++){
for(int row = 0;row < mat.length;row++)

System.out.print(mat[row][col]+ " ");

System.out.println();

}

Output:
3 1
4 2
5 3

Note that the use of regular for loops
is required to traverse column major order.
Do you see why for each will not work?

17

Row-by-Row
Suppose the following method has been implemented which prints
a 1D array.
// print out elements of array separated by spaces
public void printArray(int[] array)

{ /*implementation not shown*/ }

Use it to print out the 2D array mat by processing one row at a
time(row-by-row).

for(int i = 0;i < mat.length; i++){

printArray(mat[i]); //mat[i] is row i of mat
System.out.println();

}

18

sum
Write the method that returns the sum of a 2D array.

public int sum(int[][] a){

int sum = 0;

for(int[] row: a){

for(int value: row)

sum += value;
}

return sum;

}

19

searching an array
Write the method that searches a 2D array for a target value. Returns
true if target is in the 2D array and false otherwise. Assume the
sequentialSearch for 1D below has already been implemented. (see
previous lecture).
public boolean sequentialSearch(int[] a, int target)

{…}

public boolean search2D(int[][] a, int target){

for(int row = 0;row < a.length; row++)

if(sequentialSearch(a[row], target))

return true;

}

return false;

}

20

2D Arrays of Objects
The AP Exam will often have free response questions that use
array/arraylist or 2D array of objects.

public class Student{

private String name;
private double gpa;

// constructors and other methods not shown

// implementation not shown

public String getName(){…}
public double getGpa(){…}

}

21

2D Arrays of Objects

The Student class is used in the following SeatingChart class.

public class SeatingChart{

private Student[][] seats;

// constructors not shown
…

/* returns the average sum of all students

*/

public double sum(){

// implement this method. See next slide.
}

}

22

Regular For Loop

public double sum(){

double sum = 0.0;
for(int i = 0; i < seats.length; i++){

for(int j = 0; j < seats[0].length; j++){

sum += seats[i][j].getGpa();
}

}

return sum;

}

We can do this more simply with a for each loop! See next slide.

23

For Each Loop

public double sum(){

double sum = 0.0;

for(Student[] row: seats){
for(Student std: row){

sum += std.getGpa();
}

}
return sum;

}

24

2D Arrays of Objects

The Student class is used in the following SeatingChart class.

public class SeatingChart{

private Student[][] seats;

// constructors not shown
…

/* returns the name of the Student with the highest

gpa. Returns the first if there are multiples.

*/

public String bestStudent(){
// implement this method. See next slide.

}

}

25

2D Arrays of Objects
public class SeatingChart{
private Student[][] seats;

/* returns the name of the Student with the highest

gpa. Returns the first if there are multiples.

*/

public String bestStudent(){
Student best = seats[0][0]; // best is first student
for(Student[] row: seats){

for(Student std: row)

if(std.getGpa() > best.getGpa())
best = std;

}

return best.getName();
}

}

26

Lab 1
Write the following methods.

sum: Write method sum which accepts a 2D array of integers and
returns the sum of all of the elements. Use row-column traversal
method. Use a regular nested Loop.

rowSum: rowSum accepts two parameters: a 2D array of
integers and an integer row. rowSum returns the sum of the
integers of elements in the row given by row.

colSum: colSum accepts two parameters: a 2D array of
integers and an integer col. colSum returns the sum of the
integers of elements in the column given by col.

sum2: This method is the same as sum above but you must use
rowSum method in your code. One loop.

27

Lab 1
Write the following methods.

largest accepts a 2D array of integers and returns the largest
value. Use row-column traversal method to examine each value.
Use a nested for each loop.

largestByRow accepts two parameters: a 2D array of integers
and an integer row. largestByRow returns the largest value in
the row given by row.

largest2 accepts a 2D array of integers and returns the largest
value. You must call largestByRow. One loop.

28

Lab 1

printTranspose: Given 2D array of integers, print the
transpose of the array. The transpose of a 2D array is the array
whose rows are the columns of the original array. Do not
create a new array, instead, use for loops to traverse the
original array.

If mat={{1,2,3},{4,5,6}}; printTranspose(mat) will
print:

1 4
2 5
3 6

29

Lab 2
A magic square is an N x N array of numbers such that
1. Every number from 1 through N2 must appear exactly once.
2. Every row, column, major and minor diagonal must add up to

the same total.

A template can be found on replit for this lab: (fork the repl)
https://repl.it/@LongNguyen18/MagicSquareLab

Example: N=4 16 3 2 13

5 10 11 8

9 6 7 12

4 15 14 1

https://repl.it/@LongNguyen18/MagicSquareLab

30

Lab 2

Write the class MagicSquare with instance methods given in the
next few slides. MagicSquare should have an instance 2D array
variable square. MagicSquare should have a constructor that
accepts a 2D array.

The methods rowSum, colSum, diagSums and
exactlyOnce are intermediate methods to help you write the
isMagic method, which determines whether a square is magic.

You must use the method headers indicated for each method.
Write a driver class with a main method to test your MagicSquare
class.

31

Lab 2

public int rowSum(int row){…}

Returns the row sum indicated by row.

public int colSum(int col){…}

Returns the column sum indicated by col.

32

Lab 2
Returns whether both the major and minor diagonal sums are
equal to sum. The major and minor diagonal are highlighted
below.

16 3 2 13

5 10 11 8

9 6 7 12

4 15 14 1

public boolean diagSums(int sum){…}

33

Lab 2

public boolean exactlyOnce(){…}

Returns true if the numbers 1 to N2 occurs exactly once in
square and false otherwise. N is the number of rows(and
columns) in square. Hint: Use a tally array discussed in the
array algorithms lecture.
You must use the each of the above methods to write the
following isMagic method.
public boolean isMagic(){…}

Returns true if square is magic and false otherwise.

A template can be found on replit for this lab here: (fork the repl)
https://repl.it/@LongNguyen18/MagicSquareLab

https://repl.it/@LongNguyen18/MagicSquareLab

34

Lab 3(Grid)

Implement the Connect 4 game.

A template is provided on my website if
you wish to get some help.

