
Unit 5: Writing Classes
Variables, Scope and Semantics

Adapted from:
1) Building Java Programs: A Back to Basics Approach
by Stuart Reges and Marty Stepp
2) Runestone CSAwesome Curriculum

https://longbaonguyen.github.io

https://longbaonguyen.github.io/

2

Static Variables
private static type name;
or,
private static type name = value;

– Example:
private static int theAnswer = 42;

static variable: Stored in the class instead of each object.
– A "shared" global field that all objects can access and modify.
– Like a class constant, except that its value can be changed.

3

Final Static fields
public static final type name;
or,
public static final type name = value;

– Example:
public static final int NUMOFMONTHS = 12;

Final static variable:
– A class constant whose value cannot be changed. Usually public.
– ALL CAPS by convention.

4

Instance Variables
private type name;
or,
private type name = value;

– Example:
private int id = 243342;

instance variable: Stored in an object instead of the class.
– each object has its own copy of the instance variable.

5

BankAccount
public class BankAccount {

// static count of how many accounts are created
// (only one count shared for the whole class)
private static int objectCount = 0;

// instance variables (replicated for each object)
private String name;
private int id;

public BankAccount(String n) {
name = n;
objectCount++; // advance the id, and
id = objectCount; // give number to account

}
// clients can call this to find out # accounts created
public static int getNumAccounts() {

return objectCount;
}
...
public int getID() { // return this account's id

return id;
}

}

6

Static vs Instance Call

A static method is called through the name of the class.
An instance method is called through the name of an object.

public class Main {
public static void main(String[] args) {
BankAccount a = new BankAccount("Jim Smith");

//getID is instance
// uses object name + dot notation to call
System.out.println(a.getID());

//getNumAccounts is static
// uses class name + dot notation to call
System.out.println(BankAccount.getNumAccounts());

}
}

7

Error: Static Access
public class BankAccount {

private static int objectCount = 0;

private String name;
private int id;

public BankAccount(String n) {
name = n;
objectCount++;
id = objectCount;

}

public static int getNumAccounts() {
System.out.println(name);
return objectCount;

}
...
}

Error! static
method does not
have access to any
particular object's
variables!

8

Scope
• scope: The part of a program where a variable exists.

– From its declaration to the end of the { } braces
• A variable declared in a for loop exists only in that loop.
• A variable declared in a method exists only in that method.

public static void example() {
int x = 3;
for (int i = 1; i <= 10; i++) {

System.out.println(x);
}
// i no longer exists here

} // x ceases to exist here

x's scopei's
sc

op
e

9

Scope implications
• Variables without overlapping scope can have same name.

for (int i = 1; i <= 100; i++) {
System.out.print(“A");

}
for (int i = 1; i <= 100; i++) { // OK

System.out.print(”BB");
}
int i = 5; // OK: outside of loop's scope

• A variable can't be declared twice or used out of its scope.
for (int i = 1; i <= 100 * line; i++) {

int i = 2; // ERROR: overlapping scope
System.out.print("/");

}
i = 4; // ERROR: outside scope

10

Example

if(x <= 3){
int y = 2;
…

}

y = 5; // error since y does not exist outside
// the if block

11

Example
public class Point {

private int x;
private int y;

public Point(int initX, int initY) {
x = initX;
y = initY;

}
public void setX(){

return x;
}

}

The scope of the
instance variables
x and y is the
entire class.

12

Example
public class Point {

private int x;
private int y;

public Point(int initX, int initY) {
x = initX;
y = initY;

}
public void setX(){

// initX and initY don't exist here.
return x;

}

}

The scope of the
parameter initX
and initY is ONLY
the constructor.

13

The this keyword
this : Within a non-static method or a constructor, the keyword
this is a reference to the current object—the object whose
method or constructor is being called.

– Refer to a field: this.field

– Call a method: this.method(parameters);

– One constructor this(parameters);
can call another:

14

Student Class
public class Main{
public static void main(String[] args){
Student s1 = new Student("Mike Smith", 123);
Student s2 = new Student("Sarah Johnson", 456);
s1.printInfo();

s2.printInfo();
}

public class Student {
private String name;
private int id;
…
public void printInfo(){

System.out.println("Name: " + this.name);
System.out.println("ID: " + id);

}
}

The reference "this"
is equivalent to the
reference s1.

15

Student Class
public class Main{
public static void main(String[] args){
Student s1 = new Student("Mike Smith", 123);
Student s2 = new Student("Sarah Johnson", 456);
s1.printInfo();

s2.printInfo();
}

public class Student {
private String name;
private int id;
…
public void printInfo(){

System.out.println("Name: " + this.name);
System.out.println("ID: " + this.id);

}
}

The reference "this"
is equivalent to the
reference s2.

16

Variable shadowing
• shadowing: 2 variables with same name in same scope.

– Normally illegal, except when one variable is a field.

public class Point {
private int x;
private int y;

...

public Point(int x, int y) {

}

– In most of the class, x and y refer to the instance variables.
– In the constructor, x and y refer to the method's parameters.

The instance
variables x and y
are global
variables.

The parameter
variables x and y
are local variables.

17

Fixing shadowing
"this" can be omitted if it is clear which variable is being
referenced. The keyword "this" is helpful to fix the shadowing
problem.

public class Point {
private int x;
private int y;

public Point(int x, int y) {
this.x = x;
this.y = y;

}
}

Inside the constructor(or any method with shadowing):
– To refer to the data field x, say this.x
– To refer to the parameter x, say x

18

Constructors
One constructor can call another using the this keyword. This
helps us reuse another constructor's code.

public class Point {
private int x;
private int y;

public Point(int x, int y) {
this.x = x;
this.y = y;

}
public Point(){

this(0, 0);
}

}

19

Point Revisited
public class Point {

private int x;
private int y;
public Point(){

this(0, 0);
}
public Point(int x, int y){

this.x = x;
this.y = y;

}
public double distanceToPoint(Point other){

int dx = this.x – other.x;
int dy = this.y – other.y;
return Math.sqrt(dx * dx + dy * dy);

}
public double distanceToOrigin(){

Point origin = new Point();
return this.distanceToPoint(origin);

} }
}

20

MyComplex
this is a reference to the current object—the object whose
method is being called.

public class Main {
public static void main(String[] args) {

MyComplex a = new MyComplex(2, 5);
MyComplex b = new MyComplex(-1, 3);
a.add(b); // add b onto a, a is changed

// b is not.

}

MyComplex.java
…
public void add(MyComplex other){

this.real += other.real;
this.img += other.img;

}

21

MyComplex
In the MyComplex Lab, we distinguish between the instance
method and the static method addNew.

public class MyComplex {
private double real;
private double img;
…
public void add(MyComplex other){

this.real = this.real + other.real;
this.img = this.img + other.img;

}
public static MyComplex addNew(MyComplex a,

MyComplex b){
double real = a.real + b.real;
double img = a.img + b.img;
return new MyComplex(real, img);

}
}

22

MyComplex
Let's use the "this" keyword to rewrite add using addNew.

public class MyComplex {
private double real;
private double img;
…
public void add(MyComplex other){

MyComplex temp = addNew(this, other);
real = temp.real;
img = temp.img;

}
public static MyComplex addNew(MyComplex a,

MyComplex b){
double real = a.real + b.real;
double img = a.img + b.img;
return new MyComplex(real, img);

}
}

23

Swapping values
public static void main(String[] args) {

int a = 7;
int b = 35;

// swap a with b?
a = b;
b = a;

System.out.println(a + " " + b);
}

– What is wrong with this code? What is its output?

• The red code should be replaced with:
int temp = a;
a = b;
b = temp;

24

A swap method?
• Does the following swap method work? Why or why not?

public static void main(String[] args) {
int a = 7;
int b = 35;

// swap a with b?
swap(a, b);

System.out.println(a + " " + b);
// 7 35 (unchanged)

}
public static void swap(int a, int b) {

int temp = a;
a = b;
b = temp;

}

25

Value semantics
• value semantics: Behavior where values are copied when

assigned, passed as parameters, or returned.

– All primitive types in Java use value semantics.
– When one variable is assigned to another, its value is copied.
– Modifying the value of one variable does not affect others.

int x = 5;
int y = x; // x = 5, y = 5
y = 17; // x = 5, y = 17
x = 8; // x = 8, y = 17

26

Reference semantics (objects)
• reference semantics: Behavior where variables actually store

the address of an object in memory.

– When one variable is assigned to another, the object is
not copied; both variables refer to the same object(aliases).

– Modifying the value of one variable will affect others.

Sprite a = new Sprite(10.0, 20.0);
Sprite b = a;// refers to the same Sprite object as a
b.center_x = 50.0;
System.out.println(a.center_x); // 50.0

27

Objects as parameters
Custom objects(except String) use reference semantics. Why?

– efficiency. Copying large objects slows down a program.
– sharing. It's useful to share an object's data among methods.

When an object is passed as a parameter, the object is not
copied. The parameter refers to the same object.

– If the parameter is modified, it will affect the original object.

28

Value Semantics
The primitive types int, double, boolean all use value semantics.

Example:
public static void triple(int number) {

number = number * 3;
}
public static void main(String[] args) {

int x = 2;
triple(x);
System.out.println(x); // x is unchanged!

}

29

Value Semantics
String uses value semantics like primitive types. It's the only
object class that uses value sematics.

Example:
public static void repeat(String str) {

str = str + str;
}
public static void main(String[] args) {

String str = “hi”;
repeat(str);
System.out.println(str); // "hi"

}

30

Reference Semantics
In the example below, a and b both reference the same object. They
are aliases. Modifying one will modify the other.

Example:
public static void moveRight(Sprite b) {

b.center_x += 5.0;
}

}
public static void main(String[] args) {

Sprite a = new Sprite(100.0, 200.0);
moveRight(a);
System.out.println(a.center_x);
// 105.0

}

31

Summary of Java classes
• A class is used for any of the following in a large program:

– a program : Has a main and perhaps other static methods.
• example: GuessingGame, Birthday, MadLibs,
• does not usually declare any static fields (except final)

– an object class : Defines a new type of objects.
• example: Point, BankAccount, Date, Car, TetrisPiece
• declares object fields, constructor(s), and methods
• might declare static fields or methods, but these are less of a focus
• should be encapsulated (all fields and static fields private)

– a module : Utility code implemented as static methods.
• example: Math

32

Lab 1
• Create a class called BankAccount(BankAccount.java) below

that keeps track of the account holder’s name(public), the
account number(private), and the balance(private) in the
account. Create a static variable that keep tracks of the
number of BankAccount objects. Make sure you use the
appropriate data types for these.

• Write 2 constructors for the class that initialize the instance
variables to default values and to given parameters. For the
parameters, use the same variable names as your instance
variables. Use the this keyword to distinguish between the
instance variables and the parameter variables.

33

Lab 1
• Write a toString() method for the class. Use the this keyword

to return the instance variables. This method should returns
the string containing the name and balance of the account.

• Write a withdraw(amount) and deposit(amount) for the class.
Withdraw should subtract the amount from the balance as long
as there is enough money in the account (the balance is larger
than the amount). Deposit should add the amount to the
balance. Use the this keyword to refer to the balance.

• Write the method that returns the number of BankAccount
objects.

• Test your class below with a main method(in Main.java) that
creates a Bank Account object and calls its deposit and
withdraw methods and prints out the object to test its
toString() method.

34

References

For more tutorials/lecture notes in Java, Python, game
programming, artificial intelligence with neural networks:

https://longbaonguyen.github.io

1) Building Java Programs: A Back to Basics Approach by Stuart Reges and
Marty Stepp

2) Runestone CSAwesome Curriculum:
https://runestone.academy/runestone/books/published/csawesome/index.html

https://longbaonguyen.github.io/
https://runestone.academy/runestone/books/published/csawesome/index.html

