
Unit 5: Writing Classes
Anatomy of a Class

Adapted from:
1) Building Java Programs: A Back to Basics Approach 
by Stuart Reges and Marty Stepp
2) Runestone CSAwesome Curriculum

https://longbaonguyen.github.io

https://longbaonguyen.github.io/


2

Classes and Objects
In Unit 2, we learned to use classes and objects that are built-in in 
Java(String, Math) or written by other programmers. In this unit, you 
will learn to write your own classes and objects!

Remember that a class in programming defines a new abstract data 
type. When you create objects, you create new variables 
or instances of that class data type.

String a = new String("hello");
Scanner input = new Scanner(System.in);

Sprite player = new Sprite(200, 400);



3

Declaration
To write your own class, you typically start a class declaration 
with public then class then the name of the class. The body of the 
class is defined inside the curly braces {}.

public class ClassName { 
// define class here - a blueprint

} 

Then, you can create objects of that new type by using:

ClassName objectname = new ClassName();



4

Instance Attributes/Methods

Remember that objects have attributes and behaviors. These 
correspond to instance variables and methods in the class 
definition. 

Instance variables hold the data for objects whereas the 
methods code the behaviors or the actions that can 
manipulate the data of the object.

A class also has constructors which initialize the instance 
variables when the object is created.



5

Point Class

public class Point {
int x;
int y;
public Point(int newX, int newY){

x = newX;
y = newY;

}
}

declare instance 
variables

constructor: initialize 
variables



6

Instance Variables
instance variable: A variable inside an object that is part of its 
data. Also called fields, attributes or properties. 

– Each object has its own copy of each instance variable.

A variable is public by default. A public variable can be accessed 
from outside the class. The keyword private can be used to 
protect access to a variable. A private variable can only be 
accessed from inside the enclosing class.  

Declaration syntax:
private type name;



7

An Example
Here's an example of a simple class: The Sprite class.

The Sprite class is not a runnable program. A program always 
needs a class with the main method: the driver class. 

public class Sprite{
private double center_x;
double center_y;

public Sprite(double x, double y){
center_x = x;
center_y = y;

}
}

Sprite.java

an instance variable is private if 
it is only accessible/visible 
inside the class.

declaring the instance 
variables

constructor

initialize the 
instance variables.



8

Driver Class
Here's the driver class(class with the main method). The driver 
class's main method controls the flow and logic of the entire 
program. 

public class Main{
public static void main(String[] args){

Sprite player1 = new Sprite(20.0, 100.0);
Sprite player2 = new Sprite(10.0, 50.0);

System.out.println(player1.center_x);
player1.center_x = 10;

System.out.println(player1.center_y);
player1.center_y = 100;

}
}

Main.java

Use the new operator 
along with calling the 
constructor to create 
objects. 

Error! center_x is 
a private variable, 
cannot be 
accessed outside 
the class!
Since center_y is 
not declared 
private, this is ok. 



9

Private Access
If we can't directly work with the private variables of a class from 
outside the class, then how can we work with variables of the class?

We can create methods that can give us controlled, indirect access to 
the instance variables. We discuss this next. 

public class Main{
public static void main(String[] args){

Sprite player1 = new Sprite(20.0, 100.0);
Sprite player2 = new Sprite(10.0, 50.0);

System.out.println(player1.center_x);
player1.center_x = 10;

}
}

Main.java

Error! Can't 
access private 
variables!



10

Instance methods
instance method (or nonstatic method, or object method): 
Exists inside each object of a class and gives behavior to each object. 
Instance method can modify/access instance variables. The keyword 
public means that the method can be called from outside the class. 

public type name(parameters) {
statements;

}

– same syntax as static methods, but without static keyword

Although we can't directly access private variables, the public methods 
allow us to indirectly access/manipulate them.



11

Encapsulation
Object-oriented Programming stresses data 
encapsulation where the data (instance variables) and the code 
acting on the data (methods) are wrapped together into a single unit 
and the implementation details are hidden.

The data is protected from harm by being kept private. Anything 
outside the class can only interact with the public methods and cannot 
interact directly with the private instance variables. 

There are two kinds of methods. 
1) accessor: A method that lets client code(code that uses the 
class; outside of the class) examines object state.
2) mutator: A method that modifies an object's instance variables or 
state.



12

Accessor
public class Sprite{
private double center_x;
private double center_y;

public Sprite(double x, double y){
center_x = x;
center_y = y;

}
public double getCenterX(){

return center_x;
}
public void printLocation(){

System.out.println("(" + center_x + "," +
center_y + ")");

}
}

accessor method: it 
allows client code to 
examine the 
data(variables) of the 
object.

printLocation is another 
accessor method



13

Mutator
public class Sprite{
private double center_x;
private double center_y;

public Sprite(double x, double y){
center_x = x;
center_y = y;

}
… // other code not shown.
public void setCenterX(double new_x){

center_x = new_x;
}

public void moveRight(){
center_x += 5;

}
}

moveRight() is an 
another mutator method

setCenterX is a mutator 
method: it allows client 
code to modify the 
data(variables) of the 
object.



14

Private Access
public class Sprite{
private double center_x;
private double center_y;

public Sprite(double x, double y){
center_x = x;
center_y = y;

}
… // other code not shown.
public void setCenterX(double new_x){

center_x = new_x;
}

public void moveRight(){
center_x += 5;

}
}

Note that the private 
variables center_x and 
center_y are still 
accessible everywhere 
in the Sprite class. 



15

Calling Methods

public class Main{
public static void main(String[] args){

Sprite player1 = new Sprite(20.0, 100.0);
# accessing an object's data
player1.printLocation(); # (20.0, 100.0)

# modifying an object's data
player1.moveRight();

# accessing an object's data
player1.printLocation(); # (25.0, 100.0)

}
}

Main.java



16

Constructors
• constructor: Initializes the state/variables of new objects; 

has the same name as the class.

public type(parameters) {
statements;

}

– runs when the client uses the new keyword
– no return type is specified;

it implicitly "returns" the new object being created



17

example

public class Student {
private int id;
private String name;
public Student(int i, String n) {

id = i;
name = n;

}
}

public class Main {
public static void main(String[] args) {

// create two Student objects
Student s1 = new Student(321, "Sarah Jackson");
Student s2 = new Student(462, "Jim Smith");

}

Student.java

Main.java

Example

object class    

driver class    



18

Multiple constructors
• A class can have multiple constructors. These are overloaded 

constructors.
– Each one must accept a unique set of parameters.

public class Student {
private int id;
private String name;
public Student(int i, String n) {

id = i;
name = n;

}
// randomizes the id variable.
public Student(String n) {

id = (int)(900 * Math.random()) + 100;
name = n;

}

}

two parameters: an int 
and a string

one parameter: a string



19

Client code

public class Main {
public static void main(String[] args) {

Student s1 = new Student(321, "Sarah Jackson");

// s2 has a randomized id. 
Student s2 = new Student("Jim Smith");

}



20

Common constructor bugs
1.  Re-declaring fields as local variables("shadowing"):

public Student(int i, String n) {
int id = i;
String name = n;
System.out.println(id);//prints the local id

}

– This declares local variables with the same name as the instance 
variables, rather than storing values into the instance variables.  
The instance variables remain 0.

2.  Accidentally giving the constructor a return type:
public void Student(int i, String n) {

id = i;
name = n;

}

– This is actually not a constructor, but a method named Student



21

Default Constructor

If a class has no constructor, Java gives it a default 
constructor with no parameters that sets all integer fields to 0, 
booleans to false, Strings to null, etc... 

However, if a class has at least one constructor(with or 
without parameters), this default constructor is overridden by 
the new constructor(s). 



22

Default constructor

public class Point {
private int x;
private int y;
//no constructors

}

public class Main {
public static void main(String[] args) {
Point p1 = new Point(); 
// ok, uses default constructor

Point p2 = new Point(5, 2); 
//error, no such constructor

}
}

Point.java

Main.java



23

Overriding Default constructor

public class Point {
private int x;
private int y;
//override default constructor
public Point(int newX, int newY){

x = newX;
y = newY;

}
}

public class Main {
public static void main(String[] args) {
Point p1 = new Point(); 
//error, no default constructor!(overridden)
Point p2 = new Point(5, 2); 
// ok

}
}

Point.java

Main.java



24

An Implementation of Point
public class Point {

private int x;
private int y;
public Point(){

x = 0;
y = 0;

}
public Point(int newX, int newY){

x = newX;
y = newY;

}
public void translate(int dx, int dy){

x += dx;
y += dy;

}
public double distanceToOrigin(){

return Math.sqrt(x * x + y * y);
}

}

instance variables

overloaded constructors

mutator method

accessor method



25

OOP/OOD

Object-Oriented Programming(OOP) is a programming paradigm 
based on the concepts of objects data, in the form of instance 
variables and code, in the form of methods. Many popular languages 
are object-oriented(C++, Java, Javascript, Python).

In OOP, programs are made up of many objects and a program run is 
the interaction of these objects. 

In Object-Oriented Design (OOD), programmers first spend time to 
decide which classes are needed and then figure out the data and 
methods in each class. 



26

Lab 1

Rewrite the Point class with all of the methods in this lecture. Make 
sure it has at least two constructors. Save it as Point.java. Then 
implement the driver class(Main.java) the main method by creating 
some Point objects using both constructors. Print out objects’ data by 
accessing its fields and by calling its methods. 

All of your variables can be public for this part of the lab.

Note that this is the first time we are working with two 
different .java files in the same program.



27

Lab 1
Use the same repl as the previous Point class. 

Write the Circle class. This class has the following private field 
variables(data/state): int x, int y, double radius. Include at least 
two constructors to initialize the variables. 

It has the following instance methods: getArea(), boolean 
isInCircle(int a, int b), translate(int dx, int dy), tripleTheRadius().

Use the same driver class from the previous slide to test the 
Circle class. Create multiple Circle objects using all of the 
constructors and call and test all of the methods. 



28

Lab 2(Processing)
This lab requires Processing(https://processing.org/) for animation.
We will write the Sprite class which will represent a character object in 
a game.

For an introduction to Processing, see the following two lecture notes:
1) Introduction to Processing
2) Working with Images in Processing

This is only the first iteration, but we will build on this class to 
eventually be able to write a top-down view game like the original 
Legend of Zelda or a platformer game like Super Mario! 

Download the starter code here and follow the directions given by the 
comments. 

https://processing.org/
https://longbaonguyen.github.io/courses/apcsa/processing/processing1.pdf
https://longbaonguyen.github.io/courses/apcsa/processing/processing2.pdf
https://longbaonguyen.github.io/courses/platformer/SpriteLab_Challenging.zip


29

References

For more tutorials/lecture notes in Java, Python, game 
programming, artificial intelligence with neural networks:

https://longbaonguyen.github.io

1) Building Java Programs: A Back to Basics Approach by Stuart Reges and 
Marty Stepp

2) Runestone CSAwesome Curriculum: 
https://runestone.academy/runestone/books/published/csawesome/index.html

https://longbaonguyen.github.io/
https://runestone.academy/runestone/books/published/csawesome/index.html

